Home Characterization of Frictional Stressed White Etching Layers out of Cutting Tools by Means of Transmission Electron Microscopy (TEM)
Article
Licensed
Unlicensed Requires Authentication

Characterization of Frictional Stressed White Etching Layers out of Cutting Tools by Means of Transmission Electron Microscopy (TEM)

  • F. Walzhofer , M. Linz , A. Steiger-Thirsfeld , J. Bernardi , E. Badisch , H. Winkelmann and C. Gachot
Published/Copyright: July 14, 2014
Become an author with De Gruyter Brill

Abstract

White etching layers have been found at the surface of water submerged cutting tools and have been analyzed by transmission electron microscopy (TEM). For high resolution investigations, samples had been prepared by sandwich and lift-out preparation. The investigations have shown a grain refinement at the surface. The origin martensitic microstructure is transferred into a nano-crystalline microstructure of domain sizes down to 50 nm. The crystallographic structure was identified by electron diffraction as martensite. Moreover, the depth of the grain-refined layer is not as deep as the white etching phenomenon as it is found in conventional optical micrographs. Thus, the white etching layer is not only caused by the grain refinement.

Kurzfassung

In unter Wasser arbeitenden Schneidwerkzeugen wurden weiß ätzende Schichten gefunden und mittels Transmissionselektronenmikroskopie untersucht. Zur Durchführung der hochauflösenden Untersuchungen, wurden Proben mittels Sandwich- und Lift-Out-Präparation hergestellt. Bei diesen zeigte sich eine Kornfeinung an der Oberfläche: Die ursprünglich martensitische Mikrostruktur wurde in eine Struktur mit etwa 50 nm großen nanokristallinen Domänen umgewandelt. Mittels Elektronenbeugung wurde die kristallographische Struktur als Martensit bestimmt. Der Bereich der Kornfeinung reicht jedoch nicht gleich weit in das Material, wie der weiß-ätzende Effekt in herkömmlichen optischen Gefügebildern. Der weiß-ätzende Effekt ist daher nicht nur durch die Kornfeinung zu begründen.


* Corresponding author: M. Linz, e-mail: , Tel.: +43(0)2622-81600-331, Fax: +43(0)2622-81600-99

Übersetzung: I. Reinersmann


References / Literatur

1. Zárubová, N.; Gemperlová, J.; Gärtnerová, V.: A.Gemperle, Stress-induced martensitic transformations in a Cu-Al-Ni shape memory alloy studied by in situ transmission electron microscopy, Materials Science and Engineering A, 481/482 (2008) 457461. DOI: 10.1016/j.msea.2006.12.208Search in Google Scholar

2. Zhengyi, L.; Julian, F.; Yuzhi, Z.: Friction martensite and its tempering characteristics, Acta Metallurgica Sinica A, 3(1) (1990) 3539.Search in Google Scholar

3. Ryttberg, K.; Knutson Wedel, M.; Nyborg, L.: Electron microscopy of white-etching band generated by high-velocity parting-off of 100CrMn6 steel, Materials Science and Engineering A, 480 (2008) 489495. DOI: 10.1016/j.msea.2007.07.041Search in Google Scholar

4. Johnson, K.L.: Contact Mechanics, Cambridge University Press, 1992.Search in Google Scholar

5. Hertz, H.: Über die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik92, (1881), 156171.10.1515/9783112342404-004Search in Google Scholar

6. Kalin, M.: Influence of fash temperatures on the tribological behaviour in low-speed sliding: a review. Materials Science and Engineering A, 374, (2004), 390397. DOI: 10.1016/j.msea.2004.03.031Search in Google Scholar

7. Lai, W.T.; Cheng, H.S.: Temperature analysis in lubricated simple sliding rough contacts, ASLE Transactions, 23(3) (1985), 303312. DOI: 10.1080/05698198508981625Search in Google Scholar

8. Gottstein, G.: Physikalische Grundlagen der Materialkunde (third edition); SpringerHeidelberg, 2007.Search in Google Scholar

9. Kennedy, E.; Byrne, G.; Collins, D.N.: A review of the use of high power diode lasers in surface hardening, Journal of Materials Processing Technology, 155–156, 30, (2004) 18551860.Search in Google Scholar

10. BÖHLER EDELSTAHL GMBH, Böhler S390 MICROCLEAN – Schnellarbeitsstahl (2005, 11 03), Retrieved 03 22, 2013, from http://www.bohler.at/deutsch/files/downloads/S390DE.pdfSearch in Google Scholar

11. Giannuzzi, L.A.; Stevie, F.A.: “A review of focused ion beam milling techniques for TEM specimen preparation.” Micron30. 3 (1999): 197204. DOI: 10.1016/S0968-4328(99)00005-0Search in Google Scholar

12. Macherauch, E.; Zoch, H.-W.: Praktikum in Werkstoffkunde, (11th edition), Vieweg+Teubner Karlsruhe, 2011.10.1007/978-3-8348-9884-5Search in Google Scholar

13. Bergmann, W.: Werkstofftechnik Teil 1 (6th edition), Institut für Werkstofftechnik, Technische Universität Berlin, Carl Hanser Verlag München, 2008.Search in Google Scholar

14. Cohen, M.: The Strengthening of Steel, Transactions of the Metallurgical Society of AIME224, (1962) 638657.Search in Google Scholar

15. Müller-Bollenhagen, C.; Zimmermann, M.; Christ, H.-J.: Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite, International Journal of Fatigue32, (2010) 936942. DOI: 10.1016/j.ijfatigue.2009.05.007Search in Google Scholar

Received: 2014-04-04
Accepted: 2014-04-04
Published Online: 2014-07-14
Published in Print: 2014-07-14

© 2014, Carl Hanser Verlag, München

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110300/html
Scroll to top button