From Crankshafts to Bore Cores
-
Barry M. Jenkins
Abstract
The field of quantitative microscopy (QM), as applied to base-metals, alloys and their products, is considered to be mature, sophisticated, and essential to the manufacturing industry. However, the role of QM in the mining sector is still developing. Compared to man-made metals and materials, natural structures such as ore bodies can be far more complex and varied, and difficult to characterize at the microstructural level. This has limited the scope of QM in petrography until recent times. Now, enormous possibilities have opened up due to the availability of powerful computers, automated microscopes, image analysis software and advanced process modelling techniques. In most mining applications, representative sampling and specimen preparation procedures for QM need to be far more rigorous than those familiar to metallographers. It is arguable that the success or failure at the industrial level of many new applications will depend on the development of practical methodologies to meet these high demands. This paper covers some of the challenges and pitfalls of automated petrography and some improvements in methodology developed with guidance from established standards in metallography.
Kurzfassung
Das Feld der quantitativen Mikroskopie (QM), wie es bei Basismetallen, Legierungen und deren Produkten zur Anwendung kommt, wird als ausgereift, hochentwickelt und unentbehrlich für die verarbeitende Industrie angesehen. Die Rolle der QM im Bereich Bergbau entwickelt sich aber noch. Im Vergleich zu vom Menschen gefertigten Metallen und Werkstoffen, können natürliche Strukturen wie Erzkörper sehr viel komplexer und vielfältiger und auf der mikrostrukturellen Ebene schwierig zu charakterisieren sein. Dies hat den Anwendungsbereich der QM in der Petrographie bis vor kurzem begrenzt. Enorme Möglichkeiten haben sich jetzt aufgrund der Verfügbarkeit leistungsstarker Computer, automatisierter Mikroskope, von Bildanalyse-Software und fortschrittlichen Prozessmodellierungsverfahren aufgetan. Bei den meisten Anwendungen im Bereich Bergbau müssen die Verfahren der repräsentativen Probenahme und Probenpräparation für die QM wesentlich gründlicher als diejenigen sein, die den Metallographen bekannt sind. Man kann behaupten, dass der Erfolg oder das Scheitern zahlreicher Anwendungen auf industrieller Ebene von der Entwicklung praktischer Methodologien abhängen wird, um diesen hohen Ansprüchen zu genügen. Dieser Beitrag befasst sich mit einigen der Herausforderungen und Tücken in der automatisierten Petrographie und einigen Verbesserungen in der Methodologie, die sich, angelehnt an etablierte Standards, in der Metallographie entwickelt haben.
References/Literatur
[1] Vander Voort, G. F.: Editor, Image Analysis and Metallography, Vol. 17, Microstructural Science, Proc. 21st Annual IMS Technical Meeting, Toronto, IMS and ASM International, Metals Park, OH, 1989, 532 pgs.Suche in Google Scholar
[2] Jenkins, B. M.;Lovel, R. R.;Thurlby, J. A., 1990, “Quantification of Iron Ore Sinter Structure by Optical Image Analysis”, MiCon90: Advances in Video Technology for Microstructural Control, ASTM STP 1094, George F. Vander Voort, Ed., American Society for Testing and Materials, Philadelphia, p 319–331.Suche in Google Scholar
[3] Vander Voort, G. F.: Metallography and Microstructures, Vol. 9, Metals Handbook, 9th ed., American Society for Metals, Metals Park, OH, 1985.Suche in Google Scholar
[4] Vander Voort, G. F.: Metallography: Principles and Practice, ASM International, Materials Park, OH, 1999.Suche in Google Scholar
[5] Vander Voort, G.F.: “Specimen Preparation for Image Analysis,” Practical Guide to Image Analysis, ASM International, Materials Park, OH, 2000, pp. 35–74.Suche in Google Scholar
[6] Lee, R. J.;Kelly, J. F.: Overview of SEM-Based Automated Image Analysis, Scanning Electron Microscopy, 1, 303, 1980.Suche in Google Scholar
[7] Yang, N. Y.C.;Kelly, J. F.: Instrument and Sample Preparation Considerations for Computer-Controlled Scanning Electron Microscopy (CCSEM) Analyses, in Inorganic Transformations and Ash Decomposition During Combustion, Engineering Foundation Conference, Palm Coast, FL, USA, March 1991, Benson, S.A.(eds), New York, NY.Suche in Google Scholar
[8] Straszheim, W. E.;MarkuszewskiR.: SEM-AIA measurement of the association of mineral matter with organic coal matrix for predicting fine coal cleanability. Coal Prep1992; 10:59–75.10.1080/07349349208905193Suche in Google Scholar
[9] Liu, Y.;Gupta, R.;Sharma, A.;Wall, T.;Butcher, A.;Miller, G.;Gottlieb, P.;French, D.: “Mineral matter – organic matter association characterization by QEMSCAN and applications in coal utilization. Fuel, Vol. 84, 10, July 2005, pp. 1259–1267.10.1016/j.fuel.2004.07.015Suche in Google Scholar
[10] Jenkins, B. M.;Gottlieb, P.;Davison, A.: 1995, Fusion of electron microscope and light microscope images for mineral processing applications, Proceedings DICTA-95 Digital Image Computing: Techniques and Applications, Brisbane 6–8 December, pp. 455–460.Suche in Google Scholar
[11] ASTM E1382 – 97 (2004) Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.Suche in Google Scholar
[12] ASTM E1245 – 03 (2008) Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis.Suche in Google Scholar
[13] ASTM A 536: Standard Specification for Ductile Iron Castings.Suche in Google Scholar
[14] Morris, B. R.;Gokhale, A. M.;Vander Voort, G. F.: “Grain Size Estimation in Anisotropic Materials,” Metallurgical and Materials Transactions A, Vol. 29A, January 1998, pp. 237–244.10.1007/s11661-998-0176-0Suche in Google Scholar
[15] E562: Practice for Determining Volume Fraction by Systematic Manual Point Count.Suche in Google Scholar
[16] ISO 7404: Methods for the petrographic analysis of bituminous coal and anthracite.Suche in Google Scholar
[17] Jenkins, B. M.;Zhu, R.;Esterle, J.: 1995, Ergodicity: The challenge of sampling for automated microscopy in the minerals industry, Digital Image Computing: Techniques and Applications,AMaeder andBLovell (Eds), Australian Pattern Recognition Society, ISSN 1325 3034, pp. 401–407.Suche in Google Scholar
[18] Vander Voort, G. F.: “Etching Techniques for Image Analysis,” Microstructural Science, Vol. 9, Elsevier North-Holland, NY, 1981, pp. 135–154.Suche in Google Scholar
[19] Vander Voort, G. F.: “Phase Identification by Selective Etching,” Applied Metallography, Van Nostrand Reinhold Co., NY, 1986, pp. 1–19.10.1007/978-1-4684-9084-8_1Suche in Google Scholar
[20] Vander Voort, G. F.: “Progress in Characterizing Materials Using Image Analysis,” Developments in Materials Characterization Technologies, ASMI, Materials Park, OH, 1996, pp. 23–32.Suche in Google Scholar
[21] Jenkins, B. M.: Calibration of Image Analysis Systems for Statistically Demanding QM Applications. Keynote Paper – Microscopy and Microanalysis 2003, San Antonio Convention Center, Texas, Aug 3–7, 2003Suche in Google Scholar
[22] Gottlieb, P.;Wilkie, G.;Sutherland, D.;Ho-Tun, E.;Suthers, S.;Perera, K.;Jenkins, B.;Spencer, S.;Butcher, A.;Rayner, J.: Using quantitative electron microscopy for process mineralogy applications JOM April 2000, pp. 24–2510.1007/s11837-000-0126-9Suche in Google Scholar
[23] Donskoi, E.;Suthers, S. P.;Fradd, S. B.;Young, J. M.;Cambell, J. J.;Raynlyn, T. D.;Clout, J. M.F.: Utilization of optical image analysis and automatic texture classification for iron ore particle characterization Volume 20, Issue 5, April 2007, Pages 461–47110.1016/j.mineng.2006.12.005Suche in Google Scholar
[24] Bennett, P.;Reifenstein, A.;O’Brien, G.;Jenkins, B.; Coke Reactivity and Characterisation, ACARP Pub. C12057P, Mar., 2008Suche in Google Scholar
[25] CNRS ed., International Handbook of Coal Petrography 2nd edition and supplements. Centre National de la Recherche Scientifique, Paris.Suche in Google Scholar
[26] IsabelSuarez-Ruiz,JohnCrelling eds., Applied Coal Petrology: The Role of Petrology in Coal Utilization, Academic Press, 2008.Suche in Google Scholar
[27] Pearson, D. E.: Probability analysis of blended coking coals. Int. J. Coal Geo., 19, 1991, pp.109–119.10.1016/0166-5162(91)90016-CSuche in Google Scholar
[28] O’Brien, G.;Jenkins, B.;Ofori, P.;Ferguson, K.: Semi-automated petrographic assessment of coal by coal grain analysis. Minerals Engineering, Vol. 20, 5, Apr., 2007, pp. 428–434.10.1016/j.mineng.2006.11.006Suche in Google Scholar
[29] Ofori, P.;O’Brien, G.;Firth, B.;Jenkins, B.: Flotation process diagnostics and modelling by coal grain analysis. Minerals Engineering, Vol. 19, 6–8, May-July 2006, Pages 633–64010.1016/j.mineng.2005.09.036Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Inhalt / Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Thermoschock — Interpretation von makroskopischen Bruchmerkmalen
- From Crankshafts to Bore Cores
- Beitrag zum Verständnis von Solingenstahl des 19 Jahrhunderts
Artikel in diesem Heft
- Contents/Inhalt
- Inhalt / Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Thermoschock — Interpretation von makroskopischen Bruchmerkmalen
- From Crankshafts to Bore Cores
- Beitrag zum Verständnis von Solingenstahl des 19 Jahrhunderts