The Impact of Major Alloying Elements and Refiner on the SDAS of Al-Si-Cu Alloy
-
Mile Djurdjevic
, Jelena Pavlovic and Glenn Byczynski
Abstract
This paper investigates the effect of some major alloying elements (silicon and copper) and the effect of grain refiner (titanium boride) on the size of the secondary dendrite arm spacing (SDAS) in series of Al-Si-Cu alloys. It has been shown that both silicon and copper have significant influence on this solidification parameter. The addition of grain refining master alloys to aluminium alloys is common practice in many commercial foundries aiming to reduce the grain size of Al-Si alloys. However, it was shown in the present paper that master alloy based on TiB had an unexpected impact on the SDAS, decreasing the size of SDAS. In addition, there is a minimum of SDAS corresponding to the presence of 0.12 wt% of titanium in Al-Si alloy. Such findings could have important implications for Al-Si alloys in particular, due to their wide spread applications in the automotive industry.
Kurzfassung
Dieser Beitrag untersucht den Einfluss von Hauptlegierungselementen (Silizium und Kup-fer) sowie der Kornfeinungszusätze (Titan-Borid) auf den Wert des sekundären Dendritenarmabstands (SDAS) in Al-Si-Cu-Legierungensreihen. Es wird aufgezeigt, dass die Erstarrungsparameter stark von Silizium und auch Kupfer beeinflusst werden. Dabei ist es in vielen Gießereien üblich, Aluminiumlegierungen zur Reduzierung der Korngröße von Al-Si-Legierungen kornfeinende Ausgangslegierungen zuzugeben. Vorliegender Beitrag zeigt jedoch auf, dass die Ausgangslegierung auf der Grundlage von TiB den sekundäre Dendritenarmabstand unerwartet beieinflusst und den SDAS-Wert reduziert. Des Weiteren existiert ein minimaler sekundärer Dendritenarmabstand bezogen auf die vorhandenen 0,12 Masse-% Titan in der Al-Si Legierung. Solche Ergebnisse können durchaus ernstzunehmende Auswirkungen, insbesondere für Al-Si-Legierungen, die in der Automobilindustrie breite Verwendung finden, haben.
Literatur/References
1 ZangB., GarroM., TaglianoC.: Metallurgical Science and Technology, (2003) 21, 3–9Search in Google Scholar
2 KurzW., FisherD. J., Fundamentals of Solidification, Trans. Tech. Publications, Switzerland, 1989, 88Search in Google Scholar
3 FlemingsM., KattamisT.Z., BardesB.P.: AFS Transactions (1991) 99, 501–506Search in Google Scholar
4 ASM Specialty Handbook: Aluminium and Aluminium Alloys edited by J. R.Davis, ASM International The Materials Information Society, (1994), 10–60Search in Google Scholar
5 Caceres, C. H., Djurdjevic, M. B., Stockwell, T. J., Sokolowski, J. H.: Scripta Materialia, (1999) 40, 631–63710.1016/S1359-6462(98)00492-8Search in Google Scholar
6 GowriS., SamuelF.H.: Metallurgical and material transactions A, Volume 25 A, (1994), 437–44810.1007/BF02647989Search in Google Scholar
7 JohnssonM.: Thermochimica Acta, 256 (1995) 107–12110.1016/0040-6031(94)02167-MSearch in Google Scholar
8 QuestedT.E., GreerA.L.: Acta Materialia53 (2005) 4643–465310.1016/j.actamat.2005.06.018Search in Google Scholar
9 BäckerudL., ChaiG., TamminenJ., Solidification characteristic of aluminium alloys, AFS SKANALUMINIUM, USA, 2 (1991), 1–75Search in Google Scholar
10 GruzleskiJ.E., ClossetB.M., The Treatment of liquid aluminium-silicon alloys, The American Foundrymen's Society, Inc., 1990Search in Google Scholar
11 MontanyP.S., GruzleskiJ.E.: Acta mater. 44, (1996) 9, 3749–3760Search in Google Scholar
12 BanghongH., HangL., Journal of materials science letters, 16 (1997) 1750–1752Search in Google Scholar
13 YuL., LiuX., WangZ., BianX.: Journal of materials science, 40 (2005), 3865–386710.1007/s10853-005-2893-8Search in Google Scholar
14 SpearR.E., G.R.Gardner: AFS Transactions, 71 (1963), 209–21510.1038/scientificamerican0963-248Search in Google Scholar
15 RhadhakrishnaK., SeshanS., SeshadriM.R.: AFS Transactions, 88 (1980), 695–702Search in Google Scholar
16 FlemingsM., KattamisT.Z., BardesB.P.: AFS Transactions, 99 (1991), 501–506Search in Google Scholar
17 GowriS.: AFS Transactions94-29, (1984), 503–50810.1103/PhysRevA.29.503Search in Google Scholar
18 KangH.G., MiyaharaH., OgiK.: Influence of cooling rate and additions of Sr and Ti-B on solidification structures of AC4B type alloy in: Proc. of the 3rd Asian Foundry Congress, edited by Lee Z. H., Hong C. P., and Kim M.H., The Korean Foundrymen's Society, Kyongju, Korea, 1995Search in Google Scholar
19 LiuL., SamuelA.M., SamuelF.H.: Journal of Material Science38 (2003), 1–10Search in Google Scholar
20 DohertyR.D., FeestE.A., HolmK.: Met. and Mat. Trans 4, (1973) 1, 115–124Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Inhalt / Contents
- Technical Contributions/Fachbeiträge
- Untersuchungen zum Einfluss der Kornorientierung auf Nanoindentations-Messungen an Reineisen
- Grain Growth Analyses of AlMn Alloys Using Texture and Microstructure Imaging Techniques with High-Energy Synchrotron Radiation
- The Impact of Major Alloying Elements and Refiner on the SDAS of Al-Si-Cu Alloy
Articles in the same Issue
- Contents/Inhalt
- Inhalt / Contents
- Technical Contributions/Fachbeiträge
- Untersuchungen zum Einfluss der Kornorientierung auf Nanoindentations-Messungen an Reineisen
- Grain Growth Analyses of AlMn Alloys Using Texture and Microstructure Imaging Techniques with High-Energy Synchrotron Radiation
- The Impact of Major Alloying Elements and Refiner on the SDAS of Al-Si-Cu Alloy