Home Grain Growth Analyses of AlMn Alloys Using Texture and Microstructure Imaging Techniques with High-Energy Synchrotron Radiation
Article
Licensed
Unlicensed Requires Authentication

Grain Growth Analyses of AlMn Alloys Using Texture and Microstructure Imaging Techniques with High-Energy Synchrotron Radiation

  • Caterina E. Tommaseo and Helmut Klein
Published/Copyright: May 5, 2013
Become an author with De Gruyter Brill

Abstract

Annealed AlMn alloys with different amounts of manganese (0.4; 0.7 and 1 wt.-%) were analyzed with texture and microstructure imaging techniques using high-energy synchrotron radiation. These techniques allow getting reliable information about grain shape and grain size distribution in the different crystallographic directions due to high orientation and location resolution. The observed trends of the grain growth in dependence on the AlMn alloys composition and the crystallographic directions, are well correlated with the different texture components occurring with increasing annealing time. In comparison to the SEM/EBSD technique, these methods allow to get orientation dependent information about the grain size and shape related with additionally good statistics.

Kurzfassung

Es wurden geglühte AlMn-Legierungen mit verschiedenen Mangankonzentrationen (0,4; 0,7 und 1 Gew.-%) durch Textur- und Mikrostrukturanalysen mit Hilfe hochenergetischer Synchrotronstrahlung analysiert. Mit diesen Verfahren lassen sich auf Grund der starken Orientierung und Ortsauflösung Informationen über Kornform und Korngrößenverteilung in den verschiedenen kristallographischen Richtungen gewinnen. Die festgestellten Tendenzen des Kornwachstums in Abhängigkeit von der Zusammensetzung der AlMn-Legierungen und den kristallographischen Richtungen korrelieren gut mit den verschiedenen Texturkomponenten, die mit zunehmender Glühzeit auftreten. Im Vergleich zu dem REM/EBSD-Verfahren kann man mit diesen Verfahren orientierungsabhängige Erkenntnisse über die Korngröße und -form gewinnen, die in Beziehung zu einer zusätzlich guten Statistik stehen.


a
b

Dr. Caterina E. Tommaseo is research scientist in the department of crystallography in the university of Göttingen. Her research is on grain growth in metal alloys using unique microstructure imaging techniques working well with high energy synchrotron radiation. http://kristall.uni-mki.gwdg.de/Docs/tommaseo/tommaseo_pers.htm


Literatur/References

1 Bunge, H.J.: Texture analysis in materials science. Cuvillier Verlag Göttingen, 1993Search in Google Scholar

2 Adams, L.; Dingley, D.J.; Kunze, K.; Wright, S.I.: Mater. Sci. Forum157-162 (1994) 314210.4028/www.scientific.net/MSF.157-162.31Search in Google Scholar

3 Vogel, S.; Klimanek, P.; Juul Jensen, D.; Richter, H.: Scripta Materialia34 (1996) 8, 12251230Search in Google Scholar

4 Dahlem-Klein, E.; Weiland, H.; Fiszer, A.; Bunge, H.H.: Scripta Metallurgica22 (1988) 31732210.1016/S0036-9748(88)80197-2Search in Google Scholar

5 Novikov, V.: Grain growth and control of microstructure and texture in polycrystalline materials. CRC series in Materials Science and Technology, 1997Search in Google Scholar

6 Bunge, H.; Dahlem-Klein, E.: Textures and Microstructures13 (1990) 1, 5988Search in Google Scholar

7 Abbruzzese, G.; Heckelmann, I.; Luecke, K.: Acta metall. Mater.40 (1992) 3, 519532Search in Google Scholar

8 Luecke, K.; Heckelmann, I.; Abbruzzese, G.: Acta metall. Mater.40 (1992) 3, 533542Search in Google Scholar

9 Bunge, H.J.; Wcislak, L.; Klein, H.; Garbe, U.; SchneiderJ.R.: J. Appl. Cryst.36 (2003) 1240125510.1107/S0021889803014924Search in Google Scholar

10 Bunge, H.J.; Klein, H.; Wcislak, L.; Garbe, U.; Weiß, W.; Schneider, J.R.: Textures and microstructures35 (2003) 25327110.1080/07303300310001642638Search in Google Scholar

11 Kratky, O.: Z. Kristallographie72 (1930) 529540Search in Google Scholar

12 Guinier, A.; von Eller, G.: Rev. Metall.45 (1948) 27728610.1051/metal/194845080277Search in Google Scholar

13 Wcislak, L.; Klein, H.; Bunge, H.J.; Garbe, U.; Tschentscher, F.; Schneider, J.R.: J. Appl. Cryst.35 (2002) 8295.10.1107/S0021889801019902Search in Google Scholar

14 Klein, H.; Preusser, A.; Bunge, H.J.; Raue, L.: Mater. Sci. Forum467-470 (2004) 1379138410.4028/www.scientific.net/MSF.467-470.1379Search in Google Scholar

15 Klapp, A.; Klein, H.; Kuhs, W.F.: Geophysical Research Letters34 (2007) 1510.1029/2006GL029134Search in Google Scholar

16 Cahn, R.W.; Haasen, P.: Physical metallurgy, North Holland, 199610.1017/CBO9781107295551Search in Google Scholar

17 Shvindlerman, L.S.; Gottstein, G.: Scripta Materialia50 (2004) 1051105410.1016/j.scriptamat.2003.12.021Search in Google Scholar

18 Gorelik, S.S.: Recrystallization in metals and alloys 1981, Publishers Moscow (1978) (in Russian)Search in Google Scholar

19 Beck, P.A..; Kremer, J.C.; DemerL.S.; Holzworth, M.L.: Trans. Met. Soc. AIME175 (1948) 372394Search in Google Scholar

20 Greenwood, G.W., Acta Metall.4 (1956) 24324810.1016/0001-6160(56)90060-8Search in Google Scholar

21 Ralph, B.: Mat. Sci. and Techn.6 (1990) 1139114410.1179/mst.1990.6.11.1136Search in Google Scholar

22 Hillert, M.Acta Met.13 (1965) 22723810.1016/0001-6160(65)90200-2Search in Google Scholar

23 Dunn, C.G.; Walter, J.L.: Recrystallization, grain growth and textures, A.S.M. (ed. H. Margolin); Metals Park Ohio, 1966Search in Google Scholar

Received: 2007-12-4
Accepted: 2008-2-15
Published Online: 2013-05-05
Published in Print: 2009-02-01

© 2009, Carl Hanser Verlag, München

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110026/html
Scroll to top button