Startseite Technik Thermodynamic description of the Eu–Ga system using substitutional solution and associate models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic description of the Eu–Ga system using substitutional solution and associate models

  • Fei Li , Jinming Liu , Qugang Li , Chengjun Guo , Xu Zhang und Jian Xiao
Veröffentlicht/Copyright: 16. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Eu–Ga system is first optimized by the CALculation of PHAse Diagrams (CALPHAD) technique based on the experimental data in the literature. The associate model for the liquid phase is tested and compared with the substitutional solution model given the asymmetric shape of the liquid in the Eu–Ga phase diagram. Description results show that the associate model achieved better consistency with the available experimental data than the substitutional model. The liquid significantly deviates from the regular solution and shows association between Eu and Ga. The excess Gibbs energies of the solution phases (e. g., liquid, bcc, orthorhombic) are modeled through the Redlich–Kister polynomial functions. Intermetallics, such as Eu5Ga3, EuGa, Eu2Ga3, EuGa2, Eu2Ga5, and EuGa4, are treated as stoichiometric compounds. This work shows that the Eu–Ga system hosts two eutectic, five peritectic, and one congruent reactions. Two sets of parameters for self-consistent thermodynamic description of the Eu–Ga binary system are obtained.


Correspondence address, Dr. Jinming Liu, School of Material Science and Engineering Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China, Tel.: +86 797 831 2151, E-mail:

References

[1] R. Birkhahn , A.J.Steckl: Appl. Phys. Lett.73 (1998) 2143. S0003-6951(98)0264-2Suche in Google Scholar

[2] A.J. Steckl , M.Garter, R.Birkhahn, J.Scofield: Appl. Phys. Lett.73 (1998) 2450. S0003-6951(98)00343-XSuche in Google Scholar

[3] H. Wu , C.B.Poitras, M.Lipson, M.G.Spencer, J.Hunting, F.J.Disalvo, H.Wu, C.B.Poitras, M.Lipson, M.G.Spencer, J.Hunting, F.J.Disalvo: Appl. Phys. Lett.86 (2005) 191918. 10.1063/1.1923175Suche in Google Scholar

[4] J. Heikenfeld , M.Garter, D.S.Lee, R.Birkhahn, A.J.Steckl: Appl. Phys. Lett.75 (1999) 1189. 10.1063/1.124686Suche in Google Scholar

[5] M. Pan , A.J.Steckl: Appl. Phys. Lett.83 (2003) 9. 10.1063/1.1590738Suche in Google Scholar

[6] J. Sawahata , J.Seo, S.Chen, M.Takiguchi, D.Saito, S.Nemoto, J.Sawahata, J.Seo, S.Chen, M.Takiguchi, D.Saito: Appl. Phys. Lett.89 (2006) 192104. 10.1063/1.2385214Suche in Google Scholar

[7] J. Shi , M.V.S.Chandrashekhar, J.Reiherzer, W.J.Schaff, J.Lu, F.J.Disalvo, M.G.Spencer: J. Crystal Growth.310 (2008) 452. 10.1016/j.jcrysgro.2007.10.020Suche in Google Scholar

[8] S. Liu , K.Sweatman, S.McDonald, K.Nogita: Materials.11 (2018) 1. PMid:30388831; 10.3390/ma11081384Suche in Google Scholar PubMed PubMed Central

[9] J.Y. Zhu , S.-Y.Tang, K.Khoshmanesh: ACS Appl. Mater. Interfaces.8 (2016) 2173. 10.1021/acsami.5b10769Suche in Google Scholar PubMed

[10] H. Ge , J.Liu: J. Heat Transf.135 (2013) 0545031. 10.1115/1.4023392Suche in Google Scholar

[11] H. Ge , J.Liu: ASME 2013 Int. Mech. Eng. Congr. Expo. (2013).Suche in Google Scholar

[12] Y. Zheng , Z.Z.He, J.Yang, J.Liu: Sci. Rep.4 (2014) 1. PMid:24699375; 10.1038/srep04588Suche in Google Scholar

[13] S.P. Yatsenko , A.A.Semyannikov, B.G.Semenov, K.A.Chuntonov: J. Less-Common Met.64 (1979) 185. 10.1016/0022-5088(79)90170-XSuche in Google Scholar

[14] A. Iandelli : J. Inorg. Gen. Chem.330 (1964) 221. 10.1002/zaac.19643300315Suche in Google Scholar

[15] K.H.J. Buschow , D.B.de Mooij: J. Less Common Met.97 (1984) L5. 10.1016/0022-5088(84)90042-0Suche in Google Scholar

[16] J.W.C. De Vries , R.C.Thiel, K.H.J.Buschow: Phys. B+C.128 (1985) 265. 10.1016/0378-4363(85)90001-4Suche in Google Scholar

[17] S. Kirklin , J.E.Saal, B.Meredig, A.Thompson, J.W.Doak, M.Aykol, S.Rühl, C.Wolverton: NPJ Comput. Mater.1 (2015) 15010. 10.1038/npjcompumats.2015.10Suche in Google Scholar

[18] A. Jain , S.P.Ong, G.Hautier, W.Chen, W.D.Richards, S.Dacek, S.Cholia, D.Gunter, D.Skinner, G.Ceder, K.A.Persson: APL Mater.1 (2013) 011002. 10.17188/1207032Suche in Google Scholar

[19] A.T. Dinsdale : Calphad.15 (1991) 317. 10.4028/0364-5916(91)90030-NSuche in Google Scholar

[20] O. Redlich , A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036Suche in Google Scholar

[21] H.L. Lukas , S.G.Fries, B.Sundman, Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, (2007). 10.1017/CBO9780511804137Suche in Google Scholar

[22] B. Sundman , B.Jansson, J.O.Andersson: Calphad.9 (1985) 153. 10.1016/0364-5916(85)90021-5Suche in Google Scholar

Received: 2019-06-13
Accepted: 2019-10-01
Published Online: 2020-03-16
Published in Print: 2020-03-11

© 2020, Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.111868/html?lang=de
Button zum nach oben scrollen