Startseite Synthesis and characterization of layered perovskite cathode materials for SOFC application
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and characterization of layered perovskite cathode materials for SOFC application

Paper presented at the “International Conference on Processing and Characterization of Materials 2018, ICPCM 2018”, 6–8 December 2018, Rourkela, India
  • Gandham Harshitha , Swadesh Kumar Pratihar und Abanti Sahoo
Veröffentlicht/Copyright: 4. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present study emphasizes the effect on the properties of cathode material by doping Ln = Nd, Pr on A-site cation in double-layered perovskite (AA′B2O5+δ). New cathode compositions Pr1-xNdxBa0.5Sr0.5Co0.5Fe1.5O5+δ (where x = 0, 0.25, 0.5, 0.75 and 1.0) were synthesized by the glycine-nitrate method and their calcination temperature was optimized. Refinement of X-ray diffraction patterns was performed to determine crystallographic information of the obtained phase. These synthesized powders were pelletized, then sintered at 1200–1250°C for microscopic analysis and electrical conductivity measurements. The chemical stability of these compositions with electrolyte gadolinium-doped ceria was also investigated. Pr1-xNdxBa0.5Sr0.5Co0.5 · Fe1.5O5+δ at x = 0 has shown highest conductivity of 315 S cm−1 at 550°C followed by x = 1.0 of 230 S cm−1 at 570°C. The findings of the present study reveal that these compositions may be used as cathode materials in solid oxide fuel cells.


Correspondence address, Gandham Harshitha, Chemical Engineering Department, National Institute of Technology Rourkela, Rourkela-769008, India, Tel.: +91-661-246-2258, E-mail:

References

[1] Y.Chen, W.Zhou, D.Ding, M.Liu, F.Ciucci, M.Tade, Z.Shao: Adv. Energy Mater.5 (2015) 1500537. 10.1002/aenm.201500537Suche in Google Scholar

[2] J.Richter, P.Holtappels, T.Graule, T.Nakamura, L.J.Gauckler: Monatsh. Chem.140 (2009) 985999. 10.1007/s00706-009-0153-3Suche in Google Scholar

[3] R.Pelosato, G.Cordaro, D.Stucchi, C.Cristiani, G.Dotelli: J. Power Sources298 (2015) 4667. 10.1016/j.jpowsour.2015.08.034Suche in Google Scholar

[4] X.Che, Y.Shen, H.Li, T.He: J. Power Sources222 (2013) 288293. 10.1016/j.jpowsour.2012.08.044Suche in Google Scholar

[5] L.Jiang, F.Li, T.Wei, R.Zeng, Y.Huang: Electrochim. Acta.133 (2014) 3642372. 10.1016/j.electacta.2014.04.064Suche in Google Scholar

[6] A.Jun, J.Kim, J.Shin, G.Kim: Chem. Electro. Chem.3 (2016) 511530. 10.1002/celc.201500382Suche in Google Scholar

[7] K.Zhang, L.Ge, R.Ran, Z.Shao, S.Liu: Acta Mater.56 (2008) 48764889. 10.1016/j.actamat.2008.06.004Suche in Google Scholar

[8] J.H.Kim, J.T.S.Irvine: Int. J. Hydrogen Energy37 (2012) 59205929. 10.1016/j.ijhydene.2011.12.150Suche in Google Scholar

[9] Z.He, L.Xia, Y.Chen, J.Yu, X.Huang, Y.Yu: RCS Adv.5 (2015) 5759257598. 10.1039/c5ra09762bSuche in Google Scholar

[10] C.Kim, J.Kim, J.Shin, G.Kim: Int. J. Hydrogen Energy39 (2014) 2081220818. 10.1016/j.ijhydene.2014.07.007Suche in Google Scholar

[11] T.Hee, K.Park, N.Kim, S.Song, K.Hong, D.Ahn, A.K.Azad, J.Hwang, S.Bhattacharjee, S.Lee, H.Lim, J.Park: J. Power Sources331 (2016) 495506. 10.1016/j.jpowsour.2016.09.080Suche in Google Scholar

Received: 2019-01-24
Accepted: 2019-06-27
Published Online: 2019-12-04
Published in Print: 2019-12-10

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111847/pdf
Button zum nach oben scrollen