Startseite Atomistic study of fracture behavior of metallic glass fiber reinforced metal-matrix nanocomposite during bending creep deformation process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Atomistic study of fracture behavior of metallic glass fiber reinforced metal-matrix nanocomposite during bending creep deformation process

Paper presented at the “International Conference on Processing and Characterization of Materials 2018, ICPCM 2018”, 6–8 December 2018, Rourkela, India
  • K. Vijay Reddy und Snehanshu Pal
Veröffentlicht/Copyright: 4. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present work, the effect of reinforcement fiber diameter on elevated temperature bending creep deformation behavior of metal matrix composite is studied. Bending creep tests have been performed on Ni nanocomposite considering different fiber diameters using molecular dynamics simulations. Common neighbor analysis and dislocation analysis have been performed to analyze the deformation behavior and its underlying mechanism at the atomic scale during the bending creep process. Results have revealed that the specimen having thinner fiber exhibits better creep properties and higher plasticity due to the combined influence of shear band interactions and work softening. Whereas, work hardening and twin-detwin mechanisms are responsible for the quasi-cleavage fracture of the specimen having 4 nm diameter fiber.


Correspondence address, Dr. Snehanshu Pal, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India, Email: , , Tel: +91-661-2462573, Fax: +91-661-2462550

References

[1] W.Shao, D.Nabb, N.Renevier, I.Sherrington, Y.Fu, J.Luo: J. Electrochem. Soc.159 (2012) D671. 10.1149/2.065211jesSuche in Google Scholar

[2] Z.Wang, K.Georgarakis, K.S.Nakayama, Y.Li, A.A.Tsarkov, G.Xie, A.R.Yavari: Sci. Rep.6 (2016) 24384. 27067824 10.1038/srep24384Suche in Google Scholar PubMed PubMed Central

[3] R.Zheng, H.Yang, T.Liu, K.Ameyama, C.Ma: Mater. Des.53 (2014) 512. 10.1016/j.matdes.2013.07.048Suche in Google Scholar

[4] M.R.Rezaei, S.H.Razavi, S.G.Shabestari: J. Alloys Compd.673 (2016) 17. 10.1016/j.jallcom.2016.02.234Suche in Google Scholar

[5] S.Khoramkhorshid, M.Alizadeh, A.H.Taghvaei, S.Scudino: Mater. Des.90 (2016) 137. 10.1016/j.matdes.2015.10.063Suche in Google Scholar

[6] F.Bahrami, R.Amini, A.H.Taghvaei: J. Alloys Compd.714 (2017) 530. 10.1016/j.jallcom.2017.04.069Suche in Google Scholar

[7] J.Bai, J.S.Li, J.W.Qiao, J.Wang, R.Feng, H.C.Kou, P.K.Liaw: Sci. Rep.6 (2016) 32287. 27576728 10.1038/srep32287Suche in Google Scholar PubMed PubMed Central

[8] Z.Zhang, H.M.Urbassek: Comput. Mater. Sci.145 (2018) 109. 10.1016/j.commatsci.2017.12.063Suche in Google Scholar

[9] C.Kalcher, T.Brink, J.Rohrer, A.Stukowski, K.Albe: Acta Mater.141 (2017) 251. 10.1016/j.actamat.2017.08.058Suche in Google Scholar

[10] Y.Li, T.G.Langdon: Metall. Mater. Trans. A30 (1999) 315. 10.1007/s11661-999-0320-5Suche in Google Scholar

[11] M.Meraj, S.Pal: J. Mol. Model.23 (11) (2017) 309. 29018998 10.1007/s00894-017-3481-ySuche in Google Scholar PubMed

[12] K.V.Reddy, M.Meraj, S.Pal: Comput. Mater. Sci.136 (2017) 36. 10.1016/j.commatsci.2017.04.028Suche in Google Scholar

[13] S.Nosé: J Chem. Phys.81 (1984) 511. 10.1063/1.447334Suche in Google Scholar

[14] S.Plimpton: J. Comput. Phys.117 (1995) 1. 10.1006/jcph.1995.1039Suche in Google Scholar

[15] S.R.Wilson, M.I.Mendelev: Philos. Mag.95 (2015) 224. 10.1080/14786435.2014.995742Suche in Google Scholar

[16] A.Stukowski: Modell. Simul. Mater. Sci. Eng.18 (2009) 015012. 10.1088/0965-0393/18/1/015012Suche in Google Scholar

[17] J.D.Honeycutt, H.C.Andersen: J. Phys. Chem.91 (1987) 4950. 10.1021/j100303a014Suche in Google Scholar

[18] F.Shimizu, S.Ogata, J.Li: Mater. Trans.48 (2007) 2923. 10.2320/matertrans.MJ200769Suche in Google Scholar

[19] T.Sakthivel, S.P.Selvi, K.Laha: Mater. Sci. Eng. A640 (2015) 61. 10.1016/j.msea.2015.05.068Suche in Google Scholar

[20] L.Kunz, P.Lukáš, M.Svoboda: Mater. Sci. Eng. A424 (2006) 97. 10.1016/j.msea.2006.02.029Suche in Google Scholar

[21] M.W.Kapp, T.Kremmer, C.Motz, B.Yang, R.Pippan: Acta Mater.125 (2017) 351. 10.1016/j.actamat.2016.11.040Suche in Google Scholar

[22] J.R.Brockenbrough, S.Suresh, H.A.Wienecke: Acta Metall. Mater.39 (1991) 735752. 10.1016/0956-7151(91)90274-5Suche in Google Scholar

[23] D.P.Wang, B.A.Sun, X.R.Niu, Y.Yang, W.H.Wang, C.T.Liu: Intermetallics85 (2017) 4853. 10.1016/j.intermet.2017.01.015Suche in Google Scholar

Received: 2019-01-20
Accepted: 2019-05-24
Published Online: 2019-12-04
Published in Print: 2019-12-10

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111841/pdf
Button zum nach oben scrollen