Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
-
Jianguo Li
, Huan Li , Zhangyin Xu , Jichun Yang and Lijun Yang
Abstract
The microstructures and properties of austenitic stainless steel with varying nitrogen content after welding thermal simulation were investigated. The results indicate that the nitrogen fraction has a considerable influence on the phase composition and properties. Low nitrogen fraction leads to formation of δ-ferrite. After a welding thermal cycle, the number of annealing twins of high nitrogen-containing steel decreases, M23C6 precipitates, and fine M23C6 are observed. For low nitrogen-containing steel, large-size M23C6 and elongated δ-ferrite are formed, which deteriorate the ductility. Meanwhile, equilibrium phase calculations also reveal the inhibiting effect of nitrogen on M23C6 and δ-ferrite. Furthermore, susceptibility to intergranular attack by 10 % oxalic acid solution was detected, and the synergistic effect of coherent twin boundaries, M23C6, and δ-ferrite leads to low resistance to corrosion for low nitrogen-containing steel.
References
[1] F.Gillemot: Int. J. Nucl. Knowl. Manag.4 (2010) 265–278. 10.1504/IJNKM.2010.037070Search in Google Scholar
[2] N.R.Baddoo: J. Constr. Steel Res.64 (2008) 1199–1206. 10.1016/j.jcsr.2008.07.011Search in Google Scholar
[3] M.O.Speidel: Mater. Werkst.37 (2006) 875–880. 10.1002/mawe.200600068Search in Google Scholar
[4] K.H.Lo, C.H.Shek, J.K.L.Lai: Mater. Sci. Eng. R Rep.65 (2009) 39–104. 10.1016/j.mser.2009.03.001Search in Google Scholar
[5] G.Saller, K.Spiradek-Hahn, C.Scheu, H.Clemens: Mater. Sci. Eng.A 427 (2006) 246–254. 10.1016/j.msea.2006.04.020Search in Google Scholar
[6] J.W.Simmons: Mater. Sci. Eng.A 207 (1996) 159–169. 10.1016/0921-5093(95)09991-3Search in Google Scholar
[7] U.K.Mudali, P.Shankar, S.Ningshen, R.K.Dayal, H.S.Khatak, B.Raj: Corros. Sci.44 (2002) 2183–2198. 10.1016/S0010-938X(02)00035-5Search in Google Scholar
[8] M.Talha, C.K.Behera, O.P.Sinha: Mater. Sci. Eng.C 33 (2013) 3563–3575. PMid:23910251; 10.1016/j.msec.2013.06.002Search in Google Scholar PubMed
[9] H.Zhang, D.Wang, P.Xue, L.H.Wu, D.R.Ni, Z.Y.Ma: Mater. Des.110 (2016) 802–810. 10.1016/j.matdes.2016.08.048Search in Google Scholar
[10] I.Woo, Y.Kikuchi: ISIJ Int.42 (2002) 1334–1343. 10.2355/isijinternational.42.1334Search in Google Scholar
[11] L.Zhao, Z.L.Tian, Y.Peng: Sci. Technol. Weld Join.14 (2009) 87–92. 10.1179/136217108X343939Search in Google Scholar
[12] Y.Miyano, H.Fujii, Y.Sun, Y.Katada, S.Kuroda, O.Kamiya: Mater. Sci. Eng.A 528 (2011) 2917–2921. 10.1016/j.msea.2010.12.071Search in Google Scholar
[13] R.Mohammed, G.M.Reddy, K.S.Rao: Trans. Indian Inst. Met.69 (2016) 1919–1927. 10.1007/s12666-016-0851-6Search in Google Scholar
[14] J.Moon, H.Ha, T.Lee: Mater. Charact.82 (2013) 113–119. 10.1016/j.matchar.2013.05.011Search in Google Scholar
[15] J.Moon, T.Lee, S.Park, J.Jang, M.Jang, H.Ha, B.Hwang: Metall. Mater. Trans.A 44 (2013) 3069–3076. 10.1007/s11661-013-1682-2Search in Google Scholar
[16] J.Moon, T.H.Lee, H.U.Hong: Metall. Mater. Trans.A 46 (2015) 1437–1442. 10.1007/s11661-015-2771-1Search in Google Scholar
[17] M.Ogawa, K.Hiraoka, Y.Katada, M.Sagara, S.Tsukamoto: ISIJ Int.42 (2002) 1391–1398. 10.2355/isijinternational.42.1391Search in Google Scholar
[18] M.Mukherjee, T.K.Pal: Mater. Charact.131 (2017) 406–424. 10.1016/j.matchar.2017.07.028Search in Google Scholar
[19] V.G.Gavriljuk: ISIJ Int.36 (1996) 738–745. 10.2355/isijinternational.36.738Search in Google Scholar
[20] V.G.Gavriljuk, B.D.Shanina, H.Berns: Acta Mater.48 (2000) 3879–3893. 10.1016/S1359-6454(00)00192-0Search in Google Scholar
[21] M.Ojima, Y.Adachi, Y.Tomota, K.lkeda, T.Kamiyama, Y.Katada: Mater. Sci. Eng.A 527 (2009) 16–24. 10.1016/j.msea.2009.07.066Search in Google Scholar
[22] P.Villechaise, L.Sabatier, J.C.Girard: Mater. Sci. Eng.A 323 (2002) 377–385. 10.1016/S0921-5093(01)01381-8Search in Google Scholar
[23] M.D.Roach, S.I.Wright, J.E.Lemons, L.D.Zardiackas: Mater. Sci. Eng.A 586 (2013) 382–391. 10.1016/j.msea.2013.08.027Search in Google Scholar
[24] C.Blochwitz, W.Tirschler: Mater. Sci. Eng.A 339 (2003) 318–327. 10.1016/S0921-5093(02)00126-0Search in Google Scholar
[25] G.I.Taylor, R.S.F, C.F.Elam, D.Sc: P. R. Soc. Lond.A 761 (1926) 337–361. 10.1098/rspa.1926.0116Search in Google Scholar
[26] J.W.Christian: Metall. Trans.A 14 (1983) 1237–1256. 10.1007/BF02664806Search in Google Scholar
[27] G.Taylor: Prog. Mater. Sci.36 (1992) 29–61. 10.1016/0079-6425(92)90004-QSearch in Google Scholar
[28] M.S.Duesbery, V.Vitek: Acta Mater.46 (1998) 1481–1492. 10.1016/S1359-6454(97)00367-4Search in Google Scholar
[29] H.Ghassemi-Armaki, R.Maaß, S.P.Bhat, S.Sriram, J.R.Greer, K.S.Kumar: Acta Mater.62 (2014) 197–211. 10.1016/j.actamat.2013.10.001Search in Google Scholar
[30] E.Y.Guo, H.X.Xie, S.S.Singh, A.Kirubanandham, T.Jing, N.Chawla: Mater. Sci. Eng.A 598 (2014) 98–105. 10.1016/j.msea.2014.01.002Search in Google Scholar
[31] C.Du, F.Maresca, M.G.D.Geers, J.P.M.Hoefnagels: Acta Mater.146 (2018) 314–327. 10.1016/j.actamat.2017.12.054Search in Google Scholar
[32] A.B.Rhouma, T.Amadou, H.Sidhom, C.Braham: J. Alloy Compd.708 (2017) 871–886. 10.1016/j.jallcom.2017.02.273Search in Google Scholar
[33] L.Zheng, X.Hu, X.Kang, D.Li: Mater. Des.78 (2015) 42–50. 10.1016/j.matdes.2015.04.016Search in Google Scholar
[34] S.Das, M.Mukherjee, T.K.Pal: Eng. Fail. Anal.54 (2015) 90–102. 10.1016/j.engfailanal.2015.04.010Search in Google Scholar
[35] R.Valerie: Acta Mater.52 (2004) 4067–4081. 10.1016/j.actamat.2004.05.031Search in Google Scholar
[36] F.Shi, P.C.Tian, N.Jia, Z.H.Ye, Y.Qi, C.M.Liu, X.W.Li: Corros. Sci.107 (2016) 49–59. 10.1016/j.corsci.2016.02.019Search in Google Scholar
[37] C.Hu, S.Xia, H.Li, T.Liu, B.Zhou, W.Chen, N.Wang: Corros. Sci.53 (2011) 1880–1886. 10.1016/j.corsci.2011.02.005Search in Google Scholar
[38] K.Kim, J.Kang, S.Kim: Mater. Sci. Eng.A 712 (2018) 114–121. 10.1016/j.msea.2017.11.099Search in Google Scholar
[39] M.Rahmani, A.Eghlimi, M.Shamanian: J. Mater. Eng. Perform.23 (2014) 3745–3753. 10.1007/s11665-014-1136-zSearch in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News
Articles in the same Issue
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News