Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
-
Nail Suleimanov
, Sergey Khantimerov , Krzysztof Kierzek , Vladimir Shustov , Ranis Garipov , Ranis Fatukhov and Vadim Matukhin
Abstract
Interaction of conical carbon nanotubes with lithium during their electrochemical treatment was studied by galvanostatic measurements. The presence of reversible and irreversible reactions during the Li insertion into conical carbon nanotubes was established. The structural changes occurring in the conical walls of the conical carbon nanotubes in consequence of the lithium intercalation were investigated by using X-ray diffraction. The results obtained show that the lithiation of conical carbon nanotubes is partially reversible and leads to a change in the diffraction peak profile (2θ = 26°) corresponding to the interplanar distance in conical carbon nanotubes. Such changes are associated with the lithium insertion into the interplanar spaces of conical carbon nanotubes.
References
[1] J.B.Goodenough, K.-S.Park: J. Am. Chem. Soc.135 (2013) 1167. PMid:23294028; 10.1021/ja3091438Search in Google Scholar
[2] DaDeng: Energy Sci. Eng.3 (2015) 385. 10.1002/ese3.95Search in Google Scholar
[3] E.B.George: J. Electrochem. Soc.164 (2017) 5019. DOI.org/10.1149/2.0251701jes. 10.1149/2.0091707jesSearch in Google Scholar
[4] J.Li, R.Zhao, X.He, H.Liu: Ionics15 (2009) 111. 10.1007/s11581-008-0238-8Search in Google Scholar
[5] J.W.Fergus: J. Power Sources195 (2010) 939. 10.1016/j.jpowsour.2009.08.089Search in Google Scholar
[6] J.Xu, S.Dou, H.Liu, L.Dai: Nano Energy2 (2013) 439. 10.1016/j.nanoen.2013.05.013Search in Google Scholar
[7] S.Goriparty, E.Miele, F.De Angelis, E.Di Fabrizio, R. ProiettiZaccaria, C.Capligia: J. Power Sources257 (2014) 421. 10.1016/j.jpowsour.2013.11.103Search in Google Scholar
[8] N.Loeffler, D.Bresser, S.Passerini: Johnson Matthey Technol. Rev.59 (2015) 34. 10.1595/205651314x685824Search in Google Scholar
[9] R.Fong, U.V.Sacken, J.R.Dahn: J. Electrochem. Soc.137 (1990) 2009. 10.1149/1.2086855Search in Google Scholar
[10] Y.P.Wu, E.Rahm, R.Holze: J. Power Sources114 (2003) 228. 10.1016/S0378-7753(02)00596-7Search in Google Scholar
[11] C.Jiang, E.Hosono, H.Zhou: Nano Today1 (2006) 28. 10.1016/S1748-0132(06)70114-1Search in Google Scholar
[12] T.Ohzuku, Y.Iwakoshi, K.Sawai: J. Electrochem. Soc.140 (1993) 2490. 10.1149/1.2220849Search in Google Scholar
[13] R.M.Humana, M.G.Ortiz, J.E.Thomas, S.G.Real, M.Sedlarikova, J.Vondrak, A.Visintin: ECS Trans.63 (2014) 1053. 10.1007/s10008-015-3004-7Search in Google Scholar
[14] Z.G.Yang, J.L.Zhang, M.C.W.Kintner-Meyer, X.C.Lu, D.Choi, J.P.Lemmon, J.Liu: Chem. Rev.111 (2011) 3577. PMid:21375330; 10.1021/cr100290vSearch in Google Scholar
[15] Charles de lasC., W.Li: J. Power Sources208 (2012) 74. 10.1016/j.jpowsour.2012.02.013Search in Google Scholar
[16] J.L.Brian, D.C.Cory, P.R.Ryne: J. Mater. Res.25 (2010) 1636. 10.1557/JMR.2010.0209Search in Google Scholar
[17] R.A.DiLeo, A.Castiglia, M.J.Ganter, R.E.Rogers, C.D.Cress, R.P.Raffaelle, B.J.Landi: ACS Nano4 (2010) 6121. PMid:20857949; 10.1021/nn1018494Search in Google Scholar
[18] Z.Xiong, Y.S.Yun, H.-J.Jin: Materials6 (2013) 1138. PMid:28809361; 10.3390/ma6031138Search in Google Scholar
[19] E.F.Kukovitsky, L.A.Chernozatonskii, S.G.L'vov, N.N.Melnik: Chem. Phys. Lett.266 (1997) 323. 10.1016/S0009-2614(97)00020-1Search in Google Scholar
[20] E.F.Kukovitsky, S.G.L'vov, N.A.Sainov, V.A.Shustov, L.A.Chernozatonskii: Chem. Phys. Lett.355 (2002) 497. 10.1016/S0009-2614(02)00283-XSearch in Google Scholar
[21] S.M.Khantimerov, V.A.Shustov, N.V.Kurbatova, E.F.Kukovitsky, V.L.Matukhin, Y.A.Sakhratov, N.M.Suleimanov: Appl. Phys. A.113 (2013) 597. 10.1007/s00339-013-7697-0Search in Google Scholar
[22] W.Wang, I.Ruiz, K.Ahmed, H.H.Bay, A.S.George, J.Wang, J.Butler, M.Ozkan, C.S.Ozkan: Small10 (2014) 3389. 10.1002/smll.201400088Search in Google Scholar
[23] The Rietveld Method, ed. by R.A.Young (International Union of Crystallography, Oxford, University Press, 1995), 312 p.Search in Google Scholar
[24] E.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar
[25] L.Lutterotti, M.Bortolotti, G.Ischia, H.-R.Wenk: Z. Kristallogr. Suppl.26 (2007) 125. 10.1524/zksu.2007.2007.suppl_26.125Search in Google Scholar
[26] E.Frackowiak, S.Gautier, H.Gaucher, S.Bonnamy, F.Béguin: Carbon37 (1999) 61. 10.1016/S0008-6223(98)00187-0Search in Google Scholar
[27] Z.H.Yang, H.Q.Wu: Solid State Ionics143 (2001) 173. 10.1016/S0167-2738(01)00852-9Search in Google Scholar
[28] W.Xing, J.R.Dahn: J. Electrochem. Soc.144 (1997) 1195. 10.1149/1.1837572Search in Google Scholar
[29] G.T.Wu, C.S.Wang, X.B.Zhang, H.S.Yang, Z.F.Qi, P.M.He. W.Z.Li: J. Electrochem. Soc.146 (1999) 1696. 10.1149/1.1391828Search in Google Scholar
[30] J.Y.Eom, H.S.Kwon, J.Liu, O.Zhou: Carbon42 (2004) 2589. 10.1016/j.carbon.2004.05.039Search in Google Scholar
[31] A.Szabó, C.Perri, A.Csató, G.Giordano, D.Vuono, J.Nagy: Materials3 (2010) 3092. 10.3390/ma3053092Search in Google Scholar
[32] R.W.G.Wyckoff: Crystal Structures, sec. ed., vol. 1, Interscience Publishers, New York (1963).Search in Google Scholar
[33] B.S.Parimalam, A.D.MacIntosh, R.Kadam, B.L.Lucht: J. Phys. Chem.C 121 (2017) 22733. 10.1021/acs.jpcc.7b08433Search in Google Scholar
[34] C.Ling, R.G.Zhang, K.Takechi, F.Mizuno: J. Phys. Chem.C 118 (2014) 26591–26598. 10.1021/jp5093306Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News
Articles in the same Issue
- Review
- Status and development of powder metallurgy nickel-based disk superalloys
- Original Contributions
- Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal
- Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation
- Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems
- Effect of nitrogen content on microstructure, mechanical properties, and corrosion behaviour of coarse-grained heat-affected zone of nitrogen-containing austenitic stainless steel
- The effect of thermomechanical treatment on the microstructure and mechanical properties of high Mn–Cr austenitic steels
- Effect of nanostructured Al on microstructure, microhardness and sliding wear behavior of Al–xGnP composites by powder metallurgy (PM) route
- Surface mechanical attrition treatment of commercially pure titanium by electromagnetic vibration
- High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials
- Effect of sintering temperature on structural and magnetic properties of bulk Mg-ferrites
- Contents
- Contents
- DGM News
- DGM News