Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
-
Kaiju Lu
, Li Cheng und Xuan Chen
Abstract
This work examined the effects of a TiN coating on the high-cycle-fatigue (HCF) and very-high-cycle-fatigue (VHCF) properties of the Ti-6Al-4V alloy using a three-point bending ultrasonic fatigue testing machine. Three different TiN coatings with total thicknesses of 5, 15 and 25 μm were deposited on a Ti-6Al-4V alloy substrate. Scanning electron microscopy was used to examine the fracture surface. Fatigue results indicate that there is no traditional fatigue limit, and S–N curves show a continuously decreasing trend for uncoated and coated specimens. Fractography analysis shows a change from the surface to the subsurface initiations for the uncoated specimens and nucleation at the defects of the coatings for the coated specimens. A TiN coating can decrease the fatigue strength of the substrate, and the fatigue life decreases with increasing total thickness. Furthermore, delamination can be observed at the interface in the HCF regime.
References
[1] W.Sun, A.W.Y.Tan, N.W.Khun, I.Marinescu, E.Liu: Surf. Coat. Technol.320 (2017) 452. 10.1016/j.surfcoat.2016.11.093Suche in Google Scholar
[2] H.J.Kolkman: Surf. Coat. Technol.72 (1995) 30. 10.1016/0257-8972(94)02336-0Suche in Google Scholar
[3] R.Ali, M.Sebastiani, E.Bemporad: Mater. Des.75 (2015) 47. 10.1016/j.matdes.2015.03.007Suche in Google Scholar
[4] E.S.Puchi-Cabrera, M.H.Staia, E.A.Ochoa-Pérez, D.G.Teer, Y.Y.Santana-Méndez, J.G.La Barbera-Sosa, D.Chicot, J.Lesage: Mater. Sci. Eng. A.527 (2010) 498. 10.1016/j.msea.2009.09.030Suche in Google Scholar
[5] E.S.Puchi-Cabrera, F.Matinez, I.Herrera, J.A.Berrios, S.Dixit, D.Bhat: Surf. Coat. Technol.182 (2004) 276. 10.1016/j.surfcoat.2003.07.003Suche in Google Scholar
[6] M.Y.P.Costa, M.L.R.Venditti, M.O.H.Cioffi, H.J.C.Voorwald, V.A.Guimarães, R.Ruas: Int. J. Fatigue.33 (2011) 759. 10.1016/j.ijfatigue.2010.11.007Suche in Google Scholar
[7] K.R.Kim, C.M.Suh, R.I.Murakami, C.W.Chung: Surf. Coat. Technol.171 (2003) 15. 10.1016/S0257-8972(03)00229-9Suche in Google Scholar
[8] S.Baragetti, L.Lusvarghi, G.Bolell, F.Tordini. Surf. Coat. Technol.203 (2009) 3078. 10.1016/j.surfcoat.2009.03.040Suche in Google Scholar
[9] Y.Zhou, G.B.Rao, J.Q.Wang, B.Zhang, Z.M.Yu, W.Ke, E.H.Han: Thin Solid Films.519 (2011) 2207. 10.1016/j.tsf.2010.10.025Suche in Google Scholar
[10] Y.L.Su, S.H.Yao, C.S.Wei, C.T.Wu: Thin Solid Films.315 (1998) 153. 10.1016/S0040-6090(97)00707-4Suche in Google Scholar
[11] X.Liu, C.Sun, Y.Hong: Mater. Sci. Eng. A.622 (2015) 228. 10.1016/j.msea.2014.09.115Suche in Google Scholar
[12] S.Heinz, D.Eifler: Int. J. Fatigue.93 (2016) 301. 10.1016/j.ijfatigue.2016.04.026Suche in Google Scholar
[13] H.Q.Xue, H.Tao, F.Montembault, Q.Y.Wang, C.Bathias: Int. J. Fatigue.29 (2007) 2085. 10.1016/j.ijfatigue.2007.03.018Suche in Google Scholar
[14] C.H.Ma, J.H.Huang, H.Chen: Thin Solid Films.418 (2002) 73. 10.1016/S0040-6090(02)00680-6Suche in Google Scholar
[15] J.D.Bressan, A.Tramontin, C.Rosa: Wear.258 (2005) 115. 10.1016/j.wear.2004.05.021Suche in Google Scholar
[16] G.Cassar, J.C.Avelar-Batiata, S.Banfield, J.Housden, M.Fenech, A.Matthews, A.Leyland: Int. J. Fatigue.33 (2011) 1313. 10.1016/j.ijfatigue.2011.04.004Suche in Google Scholar
[17] S.Baragetti, G.MLa Vecchia, A.Terranova: Int. J. Fatigue.25 (2003) 1229. 10.1016/j.ijfatigue.2003.08.009Suche in Google Scholar
[18] M.A.S.Torres, H.J.C.Voorwald: Int. J. Fatigue.24 (2002) 877. 10.1016/S0142-1123(01)00205-5Suche in Google Scholar
[19] R.H.Oskouei, R.N.Ibrahim, M.R.Barati: Thin Solid Films.526 (2012) 155. 10.1016/j.tsf.2012.11.016Suche in Google Scholar
[20] S.M.L.Sastry, H.A.Lipsitt: Metall. Trans.8 (1977) 1543–1552. 10.1007/BF02644857Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- “VII International Congress of Biomaterials, BIOMAT' 2018” (14–16 March 2018, Havana, Cuba): from medical devices to regenerative medicine
- Original Contributions
- Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
- The microstructure and three-point bending behavior of Ni–Co/WC composite cladding coating
- Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
- Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
- Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
- Exploring the use of silica sands and calcite from natural deposits to prepare bioactive glasses
- Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
- Effect of heat treatment on apatite coatings deposited on pre-calcified titanium substrates
- Calcium silicate-poly(n-butyl-2-cyanoacrylate) nanocomposite for bone tissue adhesion
- Synthesis and evaluation of a collagen–brushite cement as a drug delivery system
- Short Communications
- Biomedical porous Ti-16Nb-10Zr-(0–15)Ta alloys
- Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- “VII International Congress of Biomaterials, BIOMAT' 2018” (14–16 March 2018, Havana, Cuba): from medical devices to regenerative medicine
- Original Contributions
- Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
- The microstructure and three-point bending behavior of Ni–Co/WC composite cladding coating
- Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
- Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
- Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
- Exploring the use of silica sands and calcite from natural deposits to prepare bioactive glasses
- Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
- Effect of heat treatment on apatite coatings deposited on pre-calcified titanium substrates
- Calcium silicate-poly(n-butyl-2-cyanoacrylate) nanocomposite for bone tissue adhesion
- Synthesis and evaluation of a collagen–brushite cement as a drug delivery system
- Short Communications
- Biomedical porous Ti-16Nb-10Zr-(0–15)Ta alloys
- Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF
- DGM News
- DGM News