Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
-
Baoyan Liang
, Wangxi Zhang , Yanli Zhang und Ruijie Zhang
Abstract
SnO/SnO2 composites were synthesised through a simple solid-phase grinding-assisted ultrasonic reaction by using SnCl2 and NH4HCO3 as raw materials. Results showed that SnCl2 reacted with NH4HCO3 to form Sn6O4(OH)4 and NH4Cl through solid-phase grinding. Sn6O4(OH)4 was subsequently hydrolysed to SnO nanosheets. A small amount of SnO grains was transformed to SnO2. Different treatment processes played important roles in the composition, microstructural morphology and photocatalytic activity of SnO/SnO2 composites. The direct ultrasonication of ground products yielded microspheres comprising numerous SnO nanosheets and SnO2 nanoparticles with excellent visible photocatalytic properties, which can degrade 93.5% of methyl orange within 75 min.
References
[1] N.R.Khalid, A.Majid, M.B.Tahir: Ceram. Int.43 (2017) 14552–14571. 10.1016/j.ceramint.2017.02.093Suche in Google Scholar
[2] W.X.Li: J. Aus. Ceram. Soc.49 (2013) 41–46.Suche in Google Scholar
[3] B.J.Farner, A.Turolla, A.F.Piasecki, J.Y.Bottero, M.Antonelli, M.R.Wiesner: Langmuir33 (2017) 2770–2779. PMid:28238264; 10.1021/acs.langmuir.6b04116Suche in Google Scholar PubMed PubMed Central
[4] S.T.Tan, A.A.Umar, A.Balouch: Ultrason. Sonochem.21 (2014) 754–760. PMid:24184009; 10.1016/j.ultsonch.2013.10.009Suche in Google Scholar PubMed
[5] A.Malathi, J.Madhavan, M.Ashokkumar, P.Arunachalam: Appl. Catal. A-Gen, 555 (2018) 47–74,. 10.1016/j.apcata.2018.02.010Suche in Google Scholar
[6] P.Pascariu, A.Airinei, N.Olaru: Ceram. Int.42 (2016) 6775–6781. 10.1016/j.ceramint.2016.01.054Suche in Google Scholar
[7] H.M.Zhou, Z.Y.Li, X.Niu: Ceram. Int.42 (2016) 1817–1826. 10.1016/j.ceramint.2015.09.145Suche in Google Scholar
[8] Y.K.Cui, F.P.Wang, M.Z.Iqbal, Z.Y.Wang, YanLi, J.H.Tu: Mater. Res. Bull.70 (2015) 784–788. 10.1016/j.materresbull.2015.06.021Suche in Google Scholar
[9] E.T.Cui, G.Y.Yu, H.T.Huang, Z.S.Li: Curr. Opin. Green. Sustain. Chem, 6 (2017) 42–47,. 10.1016/j.cogsc.2017.05.009Suche in Google Scholar
[10] X.Yu, J.J.Yang, K.H.Ye, X.H.Fu, Y.Zhu, Y.M.Zhang: Inorg. Chem. Commun.71 (2016) 45–49,. 10.1016/j.inoche.2016.06.034Suche in Google Scholar
[11] H.L.Nan, W.B.Wu, K.Feng, B.B.Shan, Y.S.Qiu, Y.X.Zhang: Int. J. Hydrogen. Energy42 (2017) 848–857,. 10.1016/j.ijhydene.2016.10.135Suche in Google Scholar
[12] K.Santhi, C.Rani, S.Karuppuchamy: J. Alloys Compd.662 (2016) 102–107. 10.1016/j.jallcom.2015.12.007Suche in Google Scholar
[13] J.Li, Q.M.Jia, K.L.Yao: Sci. Tech. Chem. Indus.25 (2017) 1–8.Suche in Google Scholar
[14] B.Y.Liang, D.H.Han, C.H.Sun: Ceram. Int.44 (2018) 7315–7318. 10.1016/j.ceramint.2017.10.101Suche in Google Scholar
[15] B.Liu, J.Ma, H.Zhao: Appl. Phys. A-mater.107 (2012) 437–443. 10.1007/s00339-011-6736-ySuche in Google Scholar
[16] K.Anandan, V.Rajendran: Superlattice. Microst.85 (2015) 185–197. 10.1016/j.spmi.2015.05.031Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- “VII International Congress of Biomaterials, BIOMAT' 2018” (14–16 March 2018, Havana, Cuba): from medical devices to regenerative medicine
- Original Contributions
- Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
- The microstructure and three-point bending behavior of Ni–Co/WC composite cladding coating
- Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
- Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
- Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
- Exploring the use of silica sands and calcite from natural deposits to prepare bioactive glasses
- Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
- Effect of heat treatment on apatite coatings deposited on pre-calcified titanium substrates
- Calcium silicate-poly(n-butyl-2-cyanoacrylate) nanocomposite for bone tissue adhesion
- Synthesis and evaluation of a collagen–brushite cement as a drug delivery system
- Short Communications
- Biomedical porous Ti-16Nb-10Zr-(0–15)Ta alloys
- Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- “VII International Congress of Biomaterials, BIOMAT' 2018” (14–16 March 2018, Havana, Cuba): from medical devices to regenerative medicine
- Original Contributions
- Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
- The microstructure and three-point bending behavior of Ni–Co/WC composite cladding coating
- Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
- Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
- Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
- Exploring the use of silica sands and calcite from natural deposits to prepare bioactive glasses
- Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
- Effect of heat treatment on apatite coatings deposited on pre-calcified titanium substrates
- Calcium silicate-poly(n-butyl-2-cyanoacrylate) nanocomposite for bone tissue adhesion
- Synthesis and evaluation of a collagen–brushite cement as a drug delivery system
- Short Communications
- Biomedical porous Ti-16Nb-10Zr-(0–15)Ta alloys
- Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF
- DGM News
- DGM News