Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
-
Chengxia Wei
und Yongzhong Zhan
Abstract
The solid state phase equilibria in the Dy–Nb–Si ternary system at 1 273 K were experimentally determined by means of X-ray powder diffraction, differential scanning calorimetry and scanning electron microscopy equipped with energy dispersive X-ray analysis in the whole compositional range. The isothermal section of the Dy–Nb–Si ternary phase diagram contains 12 single-phase regions, 22 two-phase regions and 11 three-phase regions. At 1 273 K, the highest solubilities of Nb in β-DySi2, β-DySi1.67, Dy3Si4, β-DySi, Dy5Si4 and Dy5Si3 are extremely low (all less than 1 at.%). Whereas the maximum solubilities of Dy in NbSi2 and Nb5Si3 are approximately confirmed to be 1.12 at.% and 1.33 at.% Dy, respectively. Combining differential scanning calorimetry results with X-ray powder diffraction analysis, it is proved that the transformation temperatures of β-DySi1.67→α-DySi1.67 and Dy3Si4→β-DySi1.67 + β-DySi are 980 K and 1 480 K, respectively.
References
[1] B.P.Bewlay, M.R.Jackson, J.C.Zhao, P.R.Subramanian: Metall. Trans. A34 (2003) 2043–2052. 10.1007/s11661-003-0269-8Suche in Google Scholar
[2] J.Geng, G.Shao, P.Tsakiropoulos: Intermetallics14 (2006) 832–837. 10.1016/j.intermet.2005.12.004Suche in Google Scholar
[3] Q.Huang, C.L.Ma, X.Q.Zhao, H.B.Xu: Chinese J. Aeronaut.21 (2008) 448–454. 10.1016/S1000-9361(08)60058-8Suche in Google Scholar
[4] T.Geng, C.R.Li, J.Bao, X.Q.Zhao, Z.M.Du, C.P.Guo: Intermetallics17 (2009) 343–357. 10.1016/j.intermet.2008.11.011Suche in Google Scholar
[5] X.J.Zhang, Y.S.Zhong, M.W.Li, Y.Y.Qin, F.Xu, X.D.He, Y.B.Li: J. Alloys Compd.613 (2014) 25–32. 10.1016/j.jallcom.2014.05.223Suche in Google Scholar
[6] B.W.Xiong, C.C.Cai, Z.JWang: J. Alloys Compd.583 (2014) 574–577. 10.1016/j.jallcom.2013.08.151Suche in Google Scholar
[7] B.W.Xiong, C.C.Cai, Z.JWang: J. Alloys Compd.604 (2014) 211–216. 10.1016/j.jallcom.2014.03.136Suche in Google Scholar
[8] A.Q.Liu, L.Sun, S.S.Li, Y.F.Han: J. Rare Earth.25 (2007) 474–479. 10.4028/www.scientific.net/MSF.546-549.1489Suche in Google Scholar
[9] J.Geng, P.Tsakiropoulos, G.S.Shao: Intermetallics15 (2007) 69–76. DOI: org/10.1016/j.intermet.2006.03.001. 10.1016/j.intermet.2006.03.001Suche in Google Scholar
[10] N.Sekido, Y.Kimura, S.Miura, F.G.Wei, Y.Mishima: J. Alloys Compd.425 (2006) 223–229. 10.1016/j.jallcom.2006.01.071Suche in Google Scholar
[11] Z.Chen, Y.W.Yan: J. Alloys Compd.413 (2006) 73–76. 10.1016/j.jallcom.2005.06.005Suche in Google Scholar
[12] P.R.Subramanian, M.G.Mendiratta, D.M.Dimiduk: J. O. M.48 (1996) 33–38. 10.1007/BF03221360Suche in Google Scholar
[13] B.P.Bewlay, H.A.Lipsitt, M.R.Jackson, M.J.Reeder, J.A.Sutliff: Mater. Sci. Eng.A 192–193 (1995) 534–543. 10.1016/0921-5093(95)03299-1Suche in Google Scholar
[14] C.L.Yeh, W.H.Chen: J. Alloys Compd.425 (2006) 216–222. 10.1016/j.intermet.2007.03.004Suche in Google Scholar
[15] Z.P.Sun, J.M.Guo, C.Zhang, X.P.Guo, X.D.Tian: Rare Metal. Matand. Eng.45 (2016) 1678–1682. 10.1016/S1875-5372(16)30139-4Suche in Google Scholar
[16] W.Shao, W.Wang, C.G.Zhou: Corros. Sci.111 (2016) 786–792. 10.1016/j.corsci.2016.06.020Suche in Google Scholar
[17] Y.Y.Wang, S.S.Li, M.L.Wu, Y.F.Han: Rare Metals.30 (2011) 326–330. 10.1007/s12598-011-0296-3Suche in Google Scholar
[18] A.Vazquez, S.K.Varma: J. Alloys Compd.509 (2011) 7027–7033. 10.1016/j.jallcom.2011.02.174Suche in Google Scholar
[19] I.Grammenos, P.Tsakiropoulos: Intermetallics18 (2010) 1524–1530. 10.1016/j.intermet.2010.04.004Suche in Google Scholar
[20] Y.X.Tian, J.T.Guo, L.Z.Zhou: Acta Metall Sin.44 (2008) 589–592.Suche in Google Scholar
[21] K.Zelenitsas, P.Tsakiropoulos: Intermetallics14 (2006) 639–659. 10.1016/j.intermet.2005.10.005Suche in Google Scholar
[22] B.Y.Kotur: Dop. Akad. Nauk Ukr. RSR A, Fiz.-Mat. Tekh.1 (1986) 79–83.Suche in Google Scholar
[23] W.P.Jiang, Y.Z.Zhan, C.L.Li, S.Liu, H.X.Zhou, Y.H.Zhuang: J. Rare Earths30 (2012) 934–940. 10.1016/S1002-0721(12)60157-4Suche in Google Scholar
[24] Y.H.Zhuang, Y.Q.Yang, H.Y.Zhou, W.Qin: J. Alloys Compd.268 (1998) 137–140. 10.1016/S0925-8388(97)00600-2Suche in Google Scholar
[25] A.V.Morozkin: J. Alloys Compd.377 (2004) L4–L6. 10.1016/j.jallcom.2004.01.050Suche in Google Scholar
[26] A.V.Morozkin, P.Manfrinetti: J. Alloys Compd.437 (2007) 165–168. 10.1016/j.jallcom.2006.07.115Suche in Google Scholar
[27] F.Yuan, Y.Mozharivskyj, A.V.Morozkin, A.V.Knotko, V.O.Yapaskurt, M.Pani, A.Provino, P.Manfrinetti: J. Solid State Chem.219 (2014) 247–258. 10.1016/j.jssc.2014.07.030Suche in Google Scholar
[28] A.V.Morozkin: J. Alloys Compd.346 (2002) L4–L6. 10.1016/S0925-8388(02)00502-9Suche in Google Scholar
[29] A.V.Morozkin: J. Alloys Compd.41 (2013) 70–75. 10.1016/j.intermet.2013.04.020Suche in Google Scholar
[30] X.Chen, Y.H.Zhuang: Phase Transit.90 (2017) 742–750. 10.1080/01411594.2016.1260718Suche in Google Scholar
[31] X.Yao, W.He, J.X.He, H.He, L.M.Zeng: Rare Metals31 (2012) 611–614. 10.1007/s12598-012-0567-7Suche in Google Scholar
[32] J.Roger, T.Guizouarn, K.Hiebl, J.F.Halet, R.Guerin: J. Alloys Compd.394 (2005) 28–34. 10.1016/j.jallcom.2004.10.043Suche in Google Scholar
[33] J.Roger, V.Babizhetskyy, T.Guizouarn, K.Hiebl, R.Guerin, J.F.Halet: J. Alloys Compd.417 (2006) 72–84. 10.1016/j.jallcom.2005.09.012Suche in Google Scholar
[34] P.Villars, K.Cenzual, W.B.Pearson: ASM International, Materials Park, OH., 2010.Suche in Google Scholar
[35] H.Okamoto: J. Phase Equilibria26 (2005) 649–649. 10.1361/154770305X74755Suche in Google Scholar
[36] M.E.Schlesinger, H.Okamoto, A.B.Gokhale, R.Abbaschian: J. Phase Equilibria14 (1993) 502–509. 10.1007/BF02671971Suche in Google Scholar
[37] F.Holtzberg, R.J.Gambino, T.R.Mcguire: J. Phys. Chem. Solids28 (1967) 2283–2289. 10.1016/0022-3697(67)90253-3Suche in Google Scholar
[38] J.P.Semitelou, J.K.Yakinthos: J. Magn. Magn. Mater.265 (2003) 152–155. 10.1016/S0304-8853(03)00243-9Suche in Google Scholar
[39] J.Roger, M.B.Yahia, V.Babizhetskyy, J.Bauer, S.Cordier, R.Guerin, K.Hiebl, X.Rocquefelte, J.Y.Saillard, J.F.Halet: J. Solid State Chem.179 (2006) 2310–2328. 10.1016/j.jssc.2006.04.023Suche in Google Scholar
[40] I.P.Semitelou: J. Magn. Magn. Mater.267 (2003) 42–45. 10.1016/S0304-8853(03)00302-0Suche in Google Scholar
[41] P.Schobinger-Papamantellos, K.H.J.Buschow, J.Rodriguez-Carvajal, C.Ritter: J. Magn. Magn. Mater.321 (2009) 2842–2851. 10.1016/j.jmmm.2009.04.032Suche in Google Scholar
[42] T.L.Bihan, K.Hiebl, P.Rogl, H.Noel: J. Alloys Compd.235 (1996) 80–83. 10.1016/0925-8388(95)02170-1Suche in Google Scholar
[43] A.M.Cardinale, D.Maccio, A.Saccone: J. Therm. Anal. Calorim.108 (2012) 817–823. 10.1007/s10973-012-2196-7Suche in Google Scholar
[44] P.Villars, L.Calvert: Pearson's handbook of crystallographic data for intermetallic phases, American Society for Metals, Metals Park, OH, 1985. 3856555Suche in Google Scholar
[45] J.Emsle: The Elements, 2nd ed., Clarendon Press, Oxford, 1991.Suche in Google Scholar
[46] J.Li, Y.H.Guo, S.Y.Yang, Z.Shi, C.P.Wang, X.J.Liu: J. Alloys Compd.642 (2015) 216–224. 10.1016/j.jallcom.2015.01.204Suche in Google Scholar
[47] Y.Z.Zhan, Z.Sun, J.C.Jiang, J.B.Ma, X.J.Zhang, Y.H.Zhuang: J. Alloys Compd.468 (2009) 150–153. 10.1016/j.jallcom.2008.01.009Suche in Google Scholar
[48] P.Villars, K.Cenzual, W.B.Pearson: Pearson's crystal data–crystal structure database for inorganic compounds, American Society for Metals, Materials Park, OH, 2010.Suche in Google Scholar
[49] R.Nirmala, A.V.Morozkin, D.Buddhikot, A.K.Nigam: J. Magn. Magn. Mater.320 (2008) 1184–1187. 10.1016/j.jmmm.2007.11.017Suche in Google Scholar
[50] D.Hohnke, E.Parthe: Acta Crystallogr. A20 (1966) 572–582. 10.1107/S0365110X66001282Suche in Google Scholar
[51] M.G.Mendiratta, D.M.Dimiduk: Scr. Mater.25 (1991) 237–242. 10.1016/0956-716X(91)90387-GSuche in Google Scholar
[52] D.V.Heerden, A.J.Gavens, T.Foecke, T.P.Weihs: Mater. Sci. Eng. A216 (1999) 212–216. 10.1016/S0921-5093(98)01068-5Suche in Google Scholar
[53] Y.M.Zhao, J.K.Liang, G.H.Rao, Y.Q.Guo, W.H.Tang, C.Dong, F.Wu: J. Alloys Compd.241 (1996) 191–195. 10.1016/0925-8388(96)02249-9Suche in Google Scholar
[54] Powder Diffraction File (No. 09–0149), Inorganic phases (JCPDS international centre for diffraction data. Pennsylvania): Swarthmore Press, 1992.Suche in Google Scholar
[55] J.Pierre, B.Lambert-Andron, J.L.Soubeyroux: J. Magn. Magn. Mater.81 (1989) 39–46. 10.1016/0304-8853(89)90226-6Suche in Google Scholar
[56] P.Schobinger-Papamantellos, J.Rodriguez-Carvajal, C.Ritter, K.H.J.Buschow: J. Magn. Magn. Mater.322 (2010) 119–132. 10.1016/j.jmmm.2009.08.041Suche in Google Scholar
[57] A.V.Morozkin, A.V.Knotko, V.O.Yapaskurt, A.Provino, P.Manfrinetti, J.L.Yao, F.Yuan, Y.Mozharivskyj: J. Solid State Chem.206 (2013) 199–208. 10.1016/j.jssc.2013.08.019Suche in Google Scholar
[58] D.Wang, S.Y.Yang, M.J.Yang, J.P.Zeng, H.F.Hu, X.J.Liu, C.P.Wang: J. Alloys Compd.605 (2014) 183–192. 10.1016/j.jallcom.2014.03.167Suche in Google Scholar
© 2019, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- “VII International Congress of Biomaterials, BIOMAT' 2018” (14–16 March 2018, Havana, Cuba): from medical devices to regenerative medicine
- Original Contributions
- Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
- The microstructure and three-point bending behavior of Ni–Co/WC composite cladding coating
- Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
- Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
- Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
- Exploring the use of silica sands and calcite from natural deposits to prepare bioactive glasses
- Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
- Effect of heat treatment on apatite coatings deposited on pre-calcified titanium substrates
- Calcium silicate-poly(n-butyl-2-cyanoacrylate) nanocomposite for bone tissue adhesion
- Synthesis and evaluation of a collagen–brushite cement as a drug delivery system
- Short Communications
- Biomedical porous Ti-16Nb-10Zr-(0–15)Ta alloys
- Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- “VII International Congress of Biomaterials, BIOMAT' 2018” (14–16 March 2018, Havana, Cuba): from medical devices to regenerative medicine
- Original Contributions
- Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
- The microstructure and three-point bending behavior of Ni–Co/WC composite cladding coating
- Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
- Phase equilibria of the Dy–Nb–Si ternary system at 1 273 K
- Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction
- Exploring the use of silica sands and calcite from natural deposits to prepare bioactive glasses
- Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
- Effect of heat treatment on apatite coatings deposited on pre-calcified titanium substrates
- Calcium silicate-poly(n-butyl-2-cyanoacrylate) nanocomposite for bone tissue adhesion
- Synthesis and evaluation of a collagen–brushite cement as a drug delivery system
- Short Communications
- Biomedical porous Ti-16Nb-10Zr-(0–15)Ta alloys
- Influence of Zr addition on the corrosion behavior of biomedical PIM Ti-16Nb alloy in SBF
- DGM News
- DGM News