Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
-
Phan Dinh Gio
, Huynh Quang Viet and Le Dai Vuong
Abstract
In this study, 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 (KNLN) + xwt.%CuO piezoelectric ceramics, where x = 0.0, 0.1, 0.2, 0.25, and 0.30, have been successfully fabricated using the conventional solid-state reaction method. The effect of CuO on the sintering behavior, structure, microstructure, and electrical properties of KNLN ceramics was studied. The addition of CuO reduced the sintering temperature of the ceramics from 1 050 °C to 950 °C. The experimental results showed that with CuO doping, the KNLN ceramics can be well sintered at a low temperature and show a dense, pure perovskite structure. At a sintering temperature of 950 °C and CuO content of 0.25 wt.%, the best physical properties of the ceramics, such as density (ρ), 4.14 g cm−3; electromechanical coupling factors (kp), 0.33 and (kt), 0.43; dielectric constant (∊), 349; dielectric loss (tanδ), 0.008; mechanical quality factor (Qm), 133; and piezoelectric constant (d33), 130 pC N−1, were obtained.
References
[1] L.D.Vuong, P.D.Gio, N.T.ThoT.V.Chuong: Indian J. Eng. Mater. Sci.20 (2013) 555–560.Search in Google Scholar
[2] L.D.Vuong, N.T.Tho: Int. J. Mater. Res.108 (2017) 222–227. 10.3139/146.111465Search in Google Scholar
[3] L.D.Vuong, P.D.Gio: Journal of Modern Physics5 (2014) 1258–1263. 10.4236/jmp.2014.514126Search in Google Scholar
[4] L.D.Vuong, N.Truong-Tho: J. Electron. Mater.46 (2017) 6395–6402. 10.1007/s11664-017-5665-8Search in Google Scholar
[5] P.D.Gio, N.V.D.Hong, L.D.Vuong: Advanced Porous Materials3 (2015) 29–32. 10.1166/apm.2015.1093Search in Google Scholar
[6] H.E.Mgbemere, M.Hinterstein, G.A.Schneider: J. Appl. Crystallography44 (2011) 1080–1089. 10.1107/S0021889811027701Search in Google Scholar
[7] P.Panda: J. Mater. Sci.44 (2009) 5049–5062. 10.1007/s10853-009-3643-0Search in Google Scholar
[8] G.A.Smolensky: Sov. Phys.-Solid State2 (1961) 2651–2654.Search in Google Scholar
[9] E.Subbarao: J. Am. Ceram. Soc.45 (1962) 166–169. 10.1111/j.1151-2916.1962.tb11113.xSearch in Google Scholar
[10] T.Takeuchi, T.Tani, Y.Saito: Jpn. J. Appl. Phys.38 (1999) 5553. 10.1109/ULTSYM.2008.0347Search in Google Scholar
[11] T.Huang, D.Q.Xiao, W.F.Liang, J.G.Wu, Z.Wang, J.G.Zhu: Ferroelectrics458 (2014) 37–42. 10.1080/00150193.2013.849978Search in Google Scholar
[12] S.Zhang, R.Xia, T.R.Shrout, G.Zang, J.Wang: J. Appl. Phys.100 (2006) 104108. 10.1063/1.2382348Search in Google Scholar
[13] L.Egerton, D.M.Dillon: J. Am. Ceram. Soc.42 (1959) 438–442. 10.1111/j.1151_2916.1959.tb12971.xSearch in Google Scholar
[14] F.Fu, J.Zhai, Z.Xu, B.Shen, X.Yao: Bull. Mater. Sci.37 (2014) 779–787. 10.1007/s12034-014-0006-5Search in Google Scholar
[15] Y.Guo, K.-i.Kakimoto, H.Ohsato: Appl. Phys. Lett.85 (2004) 4121–4123. 10.1063/1.1813636Search in Google Scholar
[16] K.Wang and J.-F.Li: J. Adv. Ceram.1 (2012) 24–37. 10.1007/s40145-012-0003-3Search in Google Scholar
[17] K.Kato, K.-i.Kakimoto, K.Hatano, K.Kobayashi, Y.Doshida: J. Ceram. Soc. Jap.122 (2014) 460–463. 10.2109/jcersj2.122.P6-1Search in Google Scholar
[18] P.D.Gio, N.T.K.Lien: Ind. J. Sci. Res. and Tech.3 (2015) 48–53.Search in Google Scholar
[19] S.H.Park, C.W.Ahn, S.Nahm, J.S.Song: Jpn. J. Appl. Phys.43 (2004) L1072. 10.1143/JJAP.43.L1072Search in Google Scholar
[20] N.B.Do, H.D.Jang, I.Hong, H.S.Han, D.T.Le, W.P.Tai, J.S.Lee: Ceram. Inter.38 (2012) S359–S362. 10.1016/j.ceramint.2011.05.012Search in Google Scholar
[21] P.D.Gio, L.D.Vuong, H.T.T.Hoa: J. Mater. Sci. and Chem. Eng.2 (2014) 20–27. 10.4236/msce.2014.211004Search in Google Scholar
[22] J.H.Kim, D.H.Kim, I.T.Seo, J.Hur, J.H.Lee, B.Y.Kim, S.Nahm: Sensors and Actuators A: Physical234 (2015) 9–16. 10.1016/j.sna.2015.08.015Search in Google Scholar
[23] I.Y.Kang, I.T.Seo, Y.J.Cha, J.H.Choi, S.Nahm, T.H.Sung, J.H.Paik: J. Eur. Ceram. Soc.32 (2012) 2381–2387. 10.1016/j.jeurceramsoc.2012.01.030Search in Google Scholar
[24] M.Matsubara, K.Kikuta, S.Hirano: J. Appl. Phys.97 (2005) 114105. 10.1063/1.1926396Search in Google Scholar
[25] D.Wan, Y.Yang, Q.Li, K.Zhu, Ultrasonics Symposium, (2008). IEEE. 1429–1432. 10.1109/ULTSYM.2008.0347ppSearch in Google Scholar
[26] H.Y.Park, J.Y.Choi, M.K.Choi, K.H.Cho, S.Nahm, H.G.Lee, H.W.Kang: J. Amer. Ceram. Soc.91 (2008) 2374–2377. 10.1111/j.1551-2916.2008.02408.xSearch in Google Scholar
[27] Y.Zhao, Y.Zhao, R.Huang, R.Liu, H.Zhou: J. Eur. Ceram. Soc.31 (2011) 1939–1944. 10.1016/j.jeurceramsoc.2011.04.018Search in Google Scholar
[28] I.T.Seo, K.H.Cho, H.Y.Park, S.J.Park, M.K.Choi, S.Nahm, H.G.Lee, H.W.Kang, H.J.Lee: J. Amer. Ceram. Soc.91 (2008) 3955–3960. 10.1111/j.1551-2916.2008.02767.xSearch in Google Scholar
[29] G.Ray, N.Sinha, B.Kumar: Mater. Chem. and Phys.142 (2013) 619–625. 10.1016/j.matchemphys.2013.08.006Search in Google Scholar
[30] E.Li, H.Kakemoto, S.Wada, T.Tsurumi: J. Amer. Ceram. Soc.90 (2007) 1787–1791. 10.1111/j.1551-2916.2006.01465.xSearch in Google Scholar
[31] F.Azough, M.Wegrzyn, R.Freer, S.Sharma, D.Hall: J. Eur. Ceram. Soc.31 (2011) 569–576. 10.1016/j.jeurceramsoc.2010.10.033Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys
- The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
- Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
- The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix
- Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium
- Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
- Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis
- Review
- Wear behaviour of Mg alloys and their composites – a review
- Short Communications
- Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- An artificial intelligence paradigm in heuristic search of tensile behaviour of titanium alloys
- The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy
- Physical and electrochemical characteristics of low pressure cold sprayed aluminium composite coating on magnesium substrate
- The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix
- Effect of Zr content on the existence form of Zr and as-cast structure of high purity commercial aluminium
- Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance
- Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis
- Review
- Wear behaviour of Mg alloys and their composites – a review
- Short Communications
- Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO
- DGM News
- DGM News