Startseite Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass

Paper presented at the “VII International Congress of Biomaterials, BIOMAT'2018”, 14–16 March 2018, Havana, Cuba
  • G. García-Álvarez , J. C. Escobedo-Bocardo , D. A. Cortés-Hernández und J. M. Almanza-Robles
Veröffentlicht/Copyright: 3. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Scaffolds were developed from mixtures of calcium aluminate (CA) and a bioactive glass (BG) and the effect of glass content on the mechanical strength and bioactivity of scaffolds was studied. Three different mixtures were tested: 95CA-5BG, 92.5CA-7.5BG and 90AC-10BG wt.%. Also, for comparison purposes, pure CA was used. In order to obtain the calcium aluminate cements (CAC), mixtures were hydrated using a water/mixture ratio by weight (w/c) of 0.4 and, with the resulting pastes, scaffolds were made by the lost-spheres method using PMMA beads. These materials showed interconnected pores (215 μm average diameter). Obtained scaffolds were loaded with antibiotic (gentamicin sulfate) and its release kinetics was studied. The evaluation of the in-vitro bioactivity was carried out by immersing scaffolds in a simulated body fluid (SBF) for 1, 7, 14 or 21 days at 36.5 °C. Compressive strength was evaluated before and after each immersion period. In all cases the formation of a Ca,P-rich compound on the surface of the scaffolds was detected after immersion in SBF. The amount of the bioactive compound formed as well as compressive strength increased as the amount of bioglass was increased. A controlled antibiotic release in SBF, with diffusion-controlled kinetics, was observed. In addition, scaffolds were not hemolytic. According to the results obtained, these materials are promising candidates for biomedical applications as drug delivery systems.


Correspondence address, Gabriela García Álvarez, MSc., Centro de Investigación y De Estudios Avanzados del IPN (CINVESTAV), Industría Metalúrgica 1062, Saltillo, Coahuila, 25900, México, Tel.: +52 8448067020, E-mail:

References

[1] L.L.Hench, J.Wilson, in: L.L.Hench, J.Wilson (Eds.), An introduction to bioceramics, Vol. 1, Singapore, World Scientific (1993) 124. 10.1142/9789814317351_0001Suche in Google Scholar

[2] R.Ravarian, F.Moztarzadeh, M. SolatiHashjin, S.M.Rabiee, P.Khoshakhlagh, M.Tahriri: Ceram. Int.36 (2010) 291297. 10.1016/j.ceramint.2009.09.016Suche in Google Scholar

[3] Balaguruman, G. Balossier, S.Kannan, J.Michel, A.Rebelo, J.M.F.Ferreira: Acta Biomater.3 (2007) 255262. PMid:17134949; 10.1016/j.actbio.2006.09.005Suche in Google Scholar

[4] J.A.Juhasz, S.M.Best, A.D.Auffret, W.Bonfield: J Mater Sci Mater Med. (2008) 18231829. PMid:18157508; 10.1007/s10856-007-3344-7Suche in Google Scholar

[5] I.R.Gibson, W.Bonfield: J. Biomed. Mater. Res.59 (2002) 697708. PMid:11774332; 10.1002/jbm.10044Suche in Google Scholar

[6] P.N.de Aza, F.Guitian, S.de Aza: Scri. Metall. Mater.31 (1994) 10011005. 10.1016/0956-716X(94)90517-7Suche in Google Scholar

[7] P.N.de Aza, J.M.Fernández-Pradas, P.Sierra: Biomaterials25 (2004) 19831990. PMid:14741612; 10.1016/j.biomaterials.2003.08.036Suche in Google Scholar

[8] S.H.Oh, R.Finones, S.Jin: Materials Research Sociecity19 (2004)1062–1067. 10.1557/JMR.2004.0139Suche in Google Scholar

[9] A.Faris, H.Engqvist, J.Lööf, M.Ottosson, L.Hermansson: Key Eng. Mater. (2006) 833836. 10.4028/www.scientific.net/KEM.309-311.833Suche in Google Scholar

[10] A.FLemosJ.M.F.Ferreira: Mater. Sci. Eng. C.11 (2000) 3540. 10.1016/S0928-4931(00)00134-XSuche in Google Scholar

[11] G.B.Sukhorukov, D.V.Volodkin, A.M.Günther, A.I.Petrov, D.B.Shenoya, H.Möhwald: J. Mater. Chem. (2004) 20732081. 10.1039/B402617ASuche in Google Scholar

[12] M.V.Thomas, D.A.Puleo: J. Biomed. Mater. Res.88 (2008) 597610. 10.1002/jbm.b.31269Suche in Google Scholar

[13] M.J.S.Beuerlein, M.D.McKee: J. Orthop. Trauma24 (2010) S4651. PMid:20182236; 10.1097/BOT.0b013e3181cec48eSuche in Google Scholar

[14] S.F.Hulbert, L.L.Hench, D.Forbers, L.S.Bowman: Ceram. Int.8 (1982) 131140. 10.1016/0272-8842(82)90003-7Suche in Google Scholar

[15] L.L.Hench: J. Non-Cryst. Solids432 (2016) 28. 10.1016/j.jnoncrysol.2014.12.038Suche in Google Scholar

[16] K.RezwanQ.Z.Chen, J.J.Blaker, A.R.Boccaccini: Biomaterials27 (2006) 34133431. PMid:16504284; 10.1016/j.biomaterials.2006.01.039Suche in Google Scholar

[17] I.R.Oliveira, T.L.Andrade, M.Jacobovitz, V.C.Pandolfelli: J. Endod.39 (2013) 774778. PMid:23683278; 10.1016/j.joen.2013.01.013Suche in Google Scholar

[18] I.R.Oliveira, T.L.Andrade, K.C.M.L.Araujo, A.P.Luz, V.C.Pandolfelli: Ceram. Int.42 (2016) 25422549. 10.1016/j.ceramint.2015.10.056Suche in Google Scholar

[19] I.R.Oliveira, T.L.Andrade, R.M.Parreira: Mat. Res.18 (2015) 382389. 10.1590/1516-1439.336714Suche in Google Scholar

[20] A.Quinto Hernández, M.C.Piña Barba: Rev. mex. fis.49 (2003) 123131. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2003000200004&lng=es&nrm=isoSuche in Google Scholar

[21] E. GallegosNieto, H.I.Medellín Castillo, D.F.De Lange: Ingenier. mecáni. tecnolog. Desarroll.4 (2013) 185194. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-73812013000200006&lng=es&nrm=iso.Suche in Google Scholar

[22] O.Gauthier, J.M.Bouler, E.Aguado, P.Pilet, G.Daculsi: Biomaterials19 (1998) 133139. 10.1016/S0142-9612(97)00180-4Suche in Google Scholar

[23] Y.Zhang, M.Zhang: J. Biomed. Mater. Res.55 (2001) 304312. 10.1002/1097-4636(20010605)55:3<304::AID-JBM1018>3.0.CO;2-JSuche in Google Scholar

[24] S. HongLi, J.R.De Wijn, P.Layrolle, K.De Groot: J. Biomed. Mater. Res.61 (2002) 109120. PMid:12001253; 10.1002/jbm.10163Suche in Google Scholar

[25] C.Bong-Soon, L.Choon-Ki, H.Kug-Sun, Y.Hyuk-Joon, R.Hyun-Seung, CSung-Soo, P.Kun-Woo: Biomaterials21 (2000) 12911298. 10.1016/S0142-9612(00)00030-2Suche in Google Scholar

[26] C.Wu, Y.Ramaswamy, P.Boughton, H.Zreiqat: Acta Biomater.4 (2008) 343353. 10.1016/j.actbio.2007.08.010Suche in Google Scholar

[27] H.Li, J.Chang: J. Mater. Sci. Mater. Med.15 (2004) 10891095. 10.1023/B:JMSM.0000046390.09540.c2Suche in Google Scholar

[28] P.Sepulveda, J.R.Jones, L.L.Hench: J. Biomed. Mater. Res.59 (2001) 340348. PMid:11745571; 10.1002/jbm.1250Suche in Google Scholar

[29] L.J.Lee, C.Zeng, X.Cao, X.Han, J.Shen, G.Xu: Compos. Sci. Technol.65 (2005) 23442363. 10.1016/j.compscitech.2005.06.016Suche in Google Scholar

[30] V.Maquet, A.R.Boccaccini, L.Pravata, I.Notingher, R.Jérôme: J. Biomed. Mater. Res. A66 (2003) 335346. PMid:12889004; 10.1002/jbm.a.10587Suche in Google Scholar

[31] P.X.Ma, R.Zhang: J. Biomed. Mater. Res.56 (2001) 469477. 10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-HSuche in Google Scholar

[32] Z.Xiong, Y.N.Yan, S.G.Wang, R.J.Zhang, C.Zhang: Scr. Mater.46 (2002) 771776. 10.1016/S1359-6462(02)00071-4Suche in Google Scholar

[33] J.M.Taboas, R.D.Maddox, P.H.Krebsbach, S.J.Hollister: Biomaterials24 (2003) 181194. 10.1016/S0142-9612(02)00276-4Suche in Google Scholar

[34] B.Leukers, H.Gülkan, S.H.Irsen, S.Milz, C.Tille, M.Schieker, H.Seitz: J. Mater. Sci. Mater. Med. 16 (2005) 11211124. PMid:16362210; 10.1007/s10856-005-4716-5Suche in Google Scholar PubMed

[35] F.Barrera-Méndez, J.C.Escobedo-Bocardo, D.A.Cortés-Hernández, J.M.Almanza-Robles, E.M.Múzquiz-Ramos: Ceram. Int.37 (2011) 24452451. 10.1016/j.ceramint.2011.03.035Suche in Google Scholar

[36] T.Kokubo, H.Takadama: Biomaterials27 (2006) 29072915. PMid:16448693; 10.1016/j.biomaterials.2006.01.017Suche in Google Scholar PubMed

[37] International standard ISO 23317 (E). Implants for Surgery – In Vitro Evaluation for Apatite-Forming Ability of Implant Materials. (2014).Suche in Google Scholar

[38] American Society for Testing and Materials (ASTM), F451-95. Standard Specification for Acrylic Bone Cement, Philadelphia, PA, USA, Vol. 13.01, (1996) 4955.Suche in Google Scholar

[39] American Society for Testing and Materials (ASTM), E2524-08. Standard test method for analysis of hemolytic properties of nanoparticles. (2013).Suche in Google Scholar

[40] H.K.Makadia, S.J.Siegel: Polymers, 3 (2011) 13771397. PMid:22577513; 10.3390/polym3031377Suche in Google Scholar PubMed PubMed Central

[41] M.M.Romero Ramírez: Minería y Geología, 3–4 (2004) 7886. https://doaj.org/article/85736f42f3274b868f1af6665192043d.Suche in Google Scholar

[42] L.C.Gerhardt, A.R.Boccaccini: Materials3 (2010) 38673910. PMid:28883315; 10.3390/ma3073867Suche in Google Scholar PubMed PubMed Central

[43] D.F.Williams, in: D.F.Williams (Ed.), Biocompatibility in clinical practice, CRC Press, Boca Raton, Fla, (1982).Suche in Google Scholar

Received: 2018-03-28
Accepted: 2018-06-28
Published Online: 2019-04-03
Published in Print: 2018-04-12

© 2019, Carl Hanser Verlag, München

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111700/pdf?lang=de
Button zum nach oben scrollen