Effect of alumina particles on structural changes in MoS2 during a ball milling process
-
Arman Hoseinpur
, Malihe Mohammadi Bezanaj , Maryam Sadat Marashi and Jalil Vahdati Khaki
Abstract
Simple, economic, and scalable production of 2D molybdenite (MoS2) nanosheets is necessary for practical applications, as in next generation anodes for Li-ion batteries. One currently developing route for production of MoS2 nanosheets is exfoliation of bulk molybdenite using a ball milling technique. In this research, the morphological evolution of molybdenite in the milling process of MoS2 and MoS2–Al2O3 systems is studied. Structural changes in molybdenite were investigated using transmission electron microscopy and X-ray diffraction. Results showed that when MoS2 was milled alone, 2D nanosheets, nanobars, and nanotubes were formed in the first step of the process and then structural destruction occurred when milling was prolonged. However, when alumina was included, destruction initiated from the beginning of the milling process leading to a highly activated structure.
References
[1] http://physicstoday.scitation.org/do/10.1063/PT.5.010331/full/Search in Google Scholar
[2] K.S.Novoselov, D.Jiang, F.Schedin, T.J.Booth, V.V.Khotkevich, S.V.Morozov, A.K.Geim, Proc: Natl. Acad. Sci.102 (2005) 10451. PMid: 16027370; 10.1073/pnas.0502848102Search in Google Scholar
[3] S.Bertolazzi, J.Brivio, A.Kis: ACS Nano.5 (2011) 9703. PMid: 22087740; 10.1021/nn203879fSearch in Google Scholar
[4] W.O.Winer: Wear.10 (1967) 422. 10.1016/0043-1648(67)90187-1Search in Google Scholar
[5] D.Tang, D.G.Kvashnin, S.Najmaei, Y.Bando, K.Kimoto, P.Koskinen, P.M.Ajayan, B.I.Yakobson, P.B.Sorokin, J.Lou, D.Golberg: Nat. Commun.5 (2014) 3631. 10.1038/ncomms4631Search in Google Scholar
[6] P.Joensen, R.F.Frindt, S.R.Morrison: Mater. Res. Bull.21 (1986) 457. 10.1016/0025-5408(86)90011-5Search in Google Scholar
[7] D.Yang, S.J.Sandoval, W.M.R.Divigalpitiya, J.C.Irwin, R.F.Frindt: Phys. Rev. B.43 (1991) 12053. 10.1103/PhysRevB.43.12053Search in Google Scholar
[8] Y.Shi, W.Zhou, A.Lu, W.Fang, Y.Lee, A.L.Hsu, S.M.Kim, K.K.Kim, H.Y.Yang, L.-J.Li, J.-C.Idrobo, J.Kong: Nano Lett.12 (2012) 2784. PMid: 22642717; 10.1021/nl204562jSearch in Google Scholar
[9] V.H.Pham, K.Kim, D.Jung, K.Singh, E.Oh, J.S.Chung: J. Power Sources244 (2013) 280. 10.1016/j.jpowsour.2013.01.053Search in Google Scholar
[10] K.H.Hu, X.G.Hu: Mater. Sci. Technol.25 (2009) 407. 10.1179/174328408X269259Search in Google Scholar
[11] Y.Liu, L.Ren, X.Qi, L.Yang, J.Li, Y.Wang, J.Zhong: J. Energy Chem.23 (2014) 207. 10.1016/S2095-4956(14)60137-6Search in Google Scholar
[12] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, M.Chhowalla: Nano Lett.12 (2012) 526. 10.1021/nl2044887Search in Google Scholar
[13] T.Korn, G.Plechinger, S.Heydrich, F.Schrettenbrunner: Notes Nanoscale Sci. Technol.21, 2014: pp. 217. 10.1007/978-3-319-02850-7Search in Google Scholar
[14] J.Kibsgaard, Z.Chen, B.N.Reinecke, T.F.Jaramillo: Nat. Mater.11 (2012) 963. PMid: 23042413; 10.1038/nmat3439Search in Google Scholar PubMed
[15] J.V.Lauritsen, M.V.Bollinger, E.Lægsgaard, K.W.Jacobsen, J.K.N⊘rskov, B.S.Clausen, H.Tops⊘e, F.Besenbacher: J. Catal.221 (2004) 510. 10.1016/j.jcat.2003.09.015Search in Google Scholar
[16] J.Xiao, D.Choi, L.Cosimbescu, P.Koech, J.Liu, J.P.Lemmon: Chem. Mater.22 (2010) 4522. 10.1021/cm101254jSearch in Google Scholar
[17] H.Shu, F.Li, C.Hu, P.Liang, D.Cao, X.Chen: Nanoscale.8 (2016) 2918. 10.1039/C5NR07909HSearch in Google Scholar
[18] Z.Hu, Q.Liu, W.Sun, W.Li, Z.Tao, shuleichou, J.Chen, S.X.Dou: Inorg. Chem. Front. (2016). 10.1039/C5QI00237KSearch in Google Scholar
[19] X.Zhang, J.Liang, S.Ding: Lect. Notes Nanoscale Sci. Technol., 2014: pp. 237. 10.1007/978-3-319-02850-7Search in Google Scholar
[20] Y.Liang, H.D.Yoo, Y.Li, J.Shuai, H.A.Calderon, F.C.Robles Hernandez, L.C.Grabow, Y.Yao: Nano Lett.15 (2015) 2194. 10.1021/acs.nanolett.5b00388Search in Google Scholar PubMed
[21] A.N.Enyashin, G.Seifert, Comput: Theor. Chem.7 (2012) 1–23. 10.1016/j.comptc.2012.08.005Search in Google Scholar
[22] M.Azhagurajan, T.Kajita, T.Itoh, Y.G.Kim, K.Itaya: J. Am. Chem. Soc.138 (2016) 3355. PMid: 26883789; 10.1021/jacs.5b11849Search in Google Scholar PubMed
[23] C.Feng, J.Ma, H.Li, R.Zeng, Z.Guo, H.Liu: Res. Bull.44 (2009) 1811. 10.1016/j.materresbull.2009.05.018Search in Google Scholar
[24] T.Xing, S.Mateti, L.H.Li, F.Ma, A.Du, Y.Gogotsi, Y.Chen: Publ. Gr. (2016) 1. 10.1038/srep35532Search in Google Scholar PubMed PubMed Central
[25] I.-Y.Jeon, Y.-R.Shin, G.-J.Sohn, H.-J.Choi, S.-Y.Bae, J.Mahmood, S.-M.Jung, J.-M.Seo, M.-J.Kim, D.Wook Chang, L.Dai, J.-B.Baek: Proc. Natl. Acad. Sci. U. S. A.109 (2012) 5588. PMid: 22454492; 10.1073/pnas.1116897109Search in Google Scholar PubMed PubMed Central
[26] M.Yi, Z.Shen: J. Mater. Chem. A3 (2015) 11700. 10.1039/C5TA00252DSearch in Google Scholar
[27] I.Jeon, Y.Shin, G.Sohn, H.Choi, S.Bae, J.Mahmood, S.Jung, J.Seoa, M.Kim, D.W.Chang, LDai, J.Baek: PNAS109 (2012) 5588. 10.1073/pnas.1116897109Search in Google Scholar
[28] P.Baláž, Extractive metallurgy of activated minerals, Elsevier, Amsterdam, 2000.Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- The Mg–Ca–O system: Thermodynamic analysis of oxide data and melting/solidification of Mg alloys with added CaO
- Thermodynamic description of the Cu–S–Sn system
- Thermophysical properties of NPG solid solution in the NPG–SCN organic system
- Magnetic properties of amorphous–nanocrystalline Fe–Cr–B–Si–Ni–Nb alloys
- Effect of sensitization on tribological behavior of AISI 304 austenitic stainless steel
- The effects of friction stir processing on the wear behavior of cast AZ91C magnesium alloy
- Effect of alumina particles on structural changes in MoS2 during a ball milling process
- Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method
- Short Communications
- A simple and economic approach to superhydrophobic films
- Cu/Ag core/shell particles via modified arc discharge method
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- The Mg–Ca–O system: Thermodynamic analysis of oxide data and melting/solidification of Mg alloys with added CaO
- Thermodynamic description of the Cu–S–Sn system
- Thermophysical properties of NPG solid solution in the NPG–SCN organic system
- Magnetic properties of amorphous–nanocrystalline Fe–Cr–B–Si–Ni–Nb alloys
- Effect of sensitization on tribological behavior of AISI 304 austenitic stainless steel
- The effects of friction stir processing on the wear behavior of cast AZ91C magnesium alloy
- Effect of alumina particles on structural changes in MoS2 during a ball milling process
- Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method
- Short Communications
- A simple and economic approach to superhydrophobic films
- Cu/Ag core/shell particles via modified arc discharge method
- DGM News
- DGM News