Home Technology Effect of alumina particles on structural changes in MoS2 during a ball milling process
Article
Licensed
Unlicensed Requires Authentication

Effect of alumina particles on structural changes in MoS2 during a ball milling process

  • Arman Hoseinpur , Malihe Mohammadi Bezanaj , Maryam Sadat Marashi and Jalil Vahdati Khaki
Published/Copyright: February 20, 2018

Abstract

Simple, economic, and scalable production of 2D molybdenite (MoS2) nanosheets is necessary for practical applications, as in next generation anodes for Li-ion batteries. One currently developing route for production of MoS2 nanosheets is exfoliation of bulk molybdenite using a ball milling technique. In this research, the morphological evolution of molybdenite in the milling process of MoS2 and MoS2–Al2O3 systems is studied. Structural changes in molybdenite were investigated using transmission electron microscopy and X-ray diffraction. Results showed that when MoS2 was milled alone, 2D nanosheets, nanobars, and nanotubes were formed in the first step of the process and then structural destruction occurred when milling was prolonged. However, when alumina was included, destruction initiated from the beginning of the milling process leading to a highly activated structure.


*Correspondence address, Professor Jalil Vahdati Khaki, Department of Materials Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad, P.O. Box 9177-948974, Iran, Tel.: +989155061108, Fax: +985118763305, E-mail:

References

[1] http://physicstoday.scitation.org/do/10.1063/PT.5.010331/full/Search in Google Scholar

[2] K.S.Novoselov, D.Jiang, F.Schedin, T.J.Booth, V.V.Khotkevich, S.V.Morozov, A.K.Geim, Proc: Natl. Acad. Sci.102 (2005) 10451. PMid: 16027370; 10.1073/pnas.0502848102Search in Google Scholar

[3] S.Bertolazzi, J.Brivio, A.Kis: ACS Nano.5 (2011) 9703. PMid: 22087740; 10.1021/nn203879fSearch in Google Scholar

[4] W.O.Winer: Wear.10 (1967) 422. 10.1016/0043-1648(67)90187-1Search in Google Scholar

[5] D.Tang, D.G.Kvashnin, S.Najmaei, Y.Bando, K.Kimoto, P.Koskinen, P.M.Ajayan, B.I.Yakobson, P.B.Sorokin, J.Lou, D.Golberg: Nat. Commun.5 (2014) 3631. 10.1038/ncomms4631Search in Google Scholar

[6] P.Joensen, R.F.Frindt, S.R.Morrison: Mater. Res. Bull.21 (1986) 457. 10.1016/0025-5408(86)90011-5Search in Google Scholar

[7] D.Yang, S.J.Sandoval, W.M.R.Divigalpitiya, J.C.Irwin, R.F.Frindt: Phys. Rev. B.43 (1991) 12053. 10.1103/PhysRevB.43.12053Search in Google Scholar

[8] Y.Shi, W.Zhou, A.Lu, W.Fang, Y.Lee, A.L.Hsu, S.M.Kim, K.K.Kim, H.Y.Yang, L.-J.Li, J.-C.Idrobo, J.Kong: Nano Lett.12 (2012) 2784. PMid: 22642717; 10.1021/nl204562jSearch in Google Scholar

[9] V.H.Pham, K.Kim, D.Jung, K.Singh, E.Oh, J.S.Chung: J. Power Sources244 (2013) 280. 10.1016/j.jpowsour.2013.01.053Search in Google Scholar

[10] K.H.Hu, X.G.Hu: Mater. Sci. Technol.25 (2009) 407. 10.1179/174328408X269259Search in Google Scholar

[11] Y.Liu, L.Ren, X.Qi, L.Yang, J.Li, Y.Wang, J.Zhong: J. Energy Chem.23 (2014) 207. 10.1016/S2095-4956(14)60137-6Search in Google Scholar

[12] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, M.Chhowalla: Nano Lett.12 (2012) 526. 10.1021/nl2044887Search in Google Scholar

[13] T.Korn, G.Plechinger, S.Heydrich, F.Schrettenbrunner: Notes Nanoscale Sci. Technol.21, 2014: pp. 217. 10.1007/978-3-319-02850-7Search in Google Scholar

[14] J.Kibsgaard, Z.Chen, B.N.Reinecke, T.F.Jaramillo: Nat. Mater.11 (2012) 963. PMid: 23042413; 10.1038/nmat3439Search in Google Scholar PubMed

[15] J.V.Lauritsen, M.V.Bollinger, E.Lægsgaard, K.W.Jacobsen, J.K.N⊘rskov, B.S.Clausen, H.Tops⊘e, F.Besenbacher: J. Catal.221 (2004) 510. 10.1016/j.jcat.2003.09.015Search in Google Scholar

[16] J.Xiao, D.Choi, L.Cosimbescu, P.Koech, J.Liu, J.P.Lemmon: Chem. Mater.22 (2010) 4522. 10.1021/cm101254jSearch in Google Scholar

[17] H.Shu, F.Li, C.Hu, P.Liang, D.Cao, X.Chen: Nanoscale.8 (2016) 2918. 10.1039/C5NR07909HSearch in Google Scholar

[18] Z.Hu, Q.Liu, W.Sun, W.Li, Z.Tao, shuleichou, J.Chen, S.X.Dou: Inorg. Chem. Front. (2016). 10.1039/C5QI00237KSearch in Google Scholar

[19] X.Zhang, J.Liang, S.Ding: Lect. Notes Nanoscale Sci. Technol., 2014: pp. 237. 10.1007/978-3-319-02850-7Search in Google Scholar

[20] Y.Liang, H.D.Yoo, Y.Li, J.Shuai, H.A.Calderon, F.C.Robles Hernandez, L.C.Grabow, Y.Yao: Nano Lett.15 (2015) 2194. 10.1021/acs.nanolett.5b00388Search in Google Scholar PubMed

[21] A.N.Enyashin, G.Seifert, Comput: Theor. Chem.7 (2012) 123. 10.1016/j.comptc.2012.08.005Search in Google Scholar

[22] M.Azhagurajan, T.Kajita, T.Itoh, Y.G.Kim, K.Itaya: J. Am. Chem. Soc.138 (2016) 3355. PMid: 26883789; 10.1021/jacs.5b11849Search in Google Scholar PubMed

[23] C.Feng, J.Ma, H.Li, R.Zeng, Z.Guo, H.Liu: Res. Bull.44 (2009) 1811. 10.1016/j.materresbull.2009.05.018Search in Google Scholar

[24] T.Xing, S.Mateti, L.H.Li, F.Ma, A.Du, Y.Gogotsi, Y.Chen: Publ. Gr. (2016) 1. 10.1038/srep35532Search in Google Scholar PubMed PubMed Central

[25] I.-Y.Jeon, Y.-R.Shin, G.-J.Sohn, H.-J.Choi, S.-Y.Bae, J.Mahmood, S.-M.Jung, J.-M.Seo, M.-J.Kim, D.Wook Chang, L.Dai, J.-B.Baek: Proc. Natl. Acad. Sci. U. S. A.109 (2012) 5588. PMid: 22454492; 10.1073/pnas.1116897109Search in Google Scholar PubMed PubMed Central

[26] M.Yi, Z.Shen: J. Mater. Chem. A3 (2015) 11700. 10.1039/C5TA00252DSearch in Google Scholar

[27] I.Jeon, Y.Shin, G.Sohn, H.Choi, S.Bae, J.Mahmood, S.Jung, J.Seoa, M.Kim, D.W.Chang, LDai, J.Baek: PNAS109 (2012) 5588. 10.1073/pnas.1116897109Search in Google Scholar

[28] P.Baláž, Extractive metallurgy of activated minerals, Elsevier, Amsterdam, 2000.Search in Google Scholar

Received: 2017-07-02
Accepted: 2017-10-23
Published Online: 2018-02-20
Published in Print: 2018-03-13

© 2018, Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111599/html
Scroll to top button