Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method
-
Hamed Ghomi
and Rahmatollah Emadi
Abstract
Bredigite has been recently evaluated as a biodegradable ceramic with high mechanical strength, biocompatibility, bioactivity and excellent cell behavior. The objective of this research was to fabricate a nanostructured bredigite scaffold for bone repair and restoration via the space holder technique. The crystallite size, phase composition, particle size, pore morphology and pore size distribution of the scaffold were characterized using X-ray diffraction, as well as transmission and scanning electron microscopy. The results showed the fabrication of a highly interconnected porous scaffold, with a total porosity of about 86%, a pore size of about 400–600 μm, and the compressive strength of about 1.1 MPa. The prepared scaffold with nanosized structure and high porosity level leading to a high specific surface area could be used as an ideal scaffold for bone regeneration in bone tissue engineering applications.
References
[1] Ch.Wu, J.Chang, J.Wang, S.Ni, W.Zhai: Biomater.26 (2005) 2925. PMid: 15603787; 10.1016/j.biomaterials.2004.09.019Search in Google Scholar
[2] S.Ni, J.Chang, L.Chou: J. Biomed. Mat. Res. A76 (2006) 196. PMid: 16265636; 10.1002/jbm.a.30525Search in Google Scholar
[3] Ch.Wu, J.Chang: J. Biomed. Mat. Res. B83 (2007) 153. PMid: 17318828; 10.1002/jbm.b.30779Search in Google Scholar
[4] Ch.Wu, J.Chang: Biomed. Mater.8 (2013) 032001. PMid: 23567351; 10.1088/1748-6041/8/3/032001Search in Google Scholar
[5] Q.Fu, E.Saiz, M.N.Rahaman, A.P.Tomsia: Mater. Sci. Eng. C31 (2011) 1245. 10.1016/j.msec.2011.04.022Search in Google Scholar
[6] E.Chevalier, D.Chulia, Ch.Pouget, M.Viana:, J. Pharm. Sci.97 (2007) 1135. PMid: 17688274; 10.1002/jps.21059Search in Google Scholar
[7] A.Mansourighasri, N.Muhamad, A.B.Sulong:, J. Mater. Process. Tech.212 (2012) 83. 10.1016/j.jmatprotec.2011.08.008Search in Google Scholar
[8] H.Ghomi, R.Emadi, S.H.Javanmard: Mater. Des.91 (2016) 193. 10.1016/j.matdes.2015.11.078Search in Google Scholar
[9] H.Ghomi, R.Emadi, S.H.Javanmard: Mater. Let.167 (2016) 157. 10.1016/j.matlet.2015.12.161Search in Google Scholar
[10] G.H.Williamson, W.H.Hall: Acta Mater.1 (1953) 22. 10.1016/0001-6160(53)90006-6Search in Google Scholar
[11] D.R.Askeland: The Science and Engineering of Materials, 2nd ed., PWS Pub. Co.1989.Search in Google Scholar
[12] M.Bohner, J.Lemaitre: Biomater.30 (2009) 2175. PMid: 19176246; 10.1016/j.biomaterials.2009.01.008Search in Google Scholar
[13] D.W.Hutmacher: Biomater.21 (2000) 2529. 10.1016/S0142-9612(00)00121-6Search in Google Scholar
[14] B.S.Chang, C.K.Lee, K.S.Hong, H.J.Youn, H.S.Ryu, S.S.Chung: Biomater.21 (2000) 1291. 10.1016/S0142-9612(00)00030-2Search in Google Scholar
[15] J.R.Jones, L.M.Ehrenfried, L.L.Hench: Biomater.27 (2006) 964. PMid: 16102812; 10.1016/j.biomaterials.2005.07.017Search in Google Scholar
[16] S.Oh, N.Oh, M.Appleford, J.L.Ong: Am. J. Biochem. Biotechnol.2 (2006) 49. 10.3844/ajbbsp.2006.49.56Search in Google Scholar
[17] K.Lin, J.Chang, Y.Zeng, W.Qian: Mater. Let.58 (2004) 2109. 10.1016/j.matlet.2004.01.008Search in Google Scholar
[18] H.P.Yuan, K.Kurashina, J.D.De Bruijn, Y.B.Li, K.De Groot, X.D.Zhang:, Biomater.20 (1999) 1799. 10.1016/S0142-9612(99)00075-7Search in Google Scholar
[19] Ch.Wu, J.Chang, W.Zhai, S.Ni: J. Mat. Sci. Mater. Med.18 (2007) 857. PMid: 17410409; 10.1007/s10856-006-0083-0Search in Google Scholar PubMed
[20] S.Sadeghzade, R.Emadi, Sh.Labbaf: Mater. Chem. Phys.202 (2017) 95. 10.1016/j.matchemphys.2017.09.018Search in Google Scholar
[21] H.R.Bakhsheshi-Rad, E.Hamzah, A.F.Ismail, M.Aziz, Z.Hadisi, M.Kashefian, A.Najafinezhad: Mater. Let.209 (2017) 369. 10.1016/j.matlet.2017.08.027Search in Google Scholar
[22] M.Abdellahi, A.Najafinezhad, H.Ghayour, S.Saber-Samandari, A.Khandan: J. Mech. Behav. Biomed. Mater.72 (2017) 171. PMid: 28499165; 10.1016/j.jmbbm.2017.05.004Search in Google Scholar
[23] N.Y.Iwata, G.H.Lee, S.Tsunakawa, Y.Tokuoka, N.Kawashima: Colloids Surf. B, 33 (2004) 1. 10.1016/j.colsurfb.2003.07.004Search in Google Scholar
[24] A.R.Oki, B.Parveen, S.Hossain, S.Adeniji, H.Donahue: J. Biomed. Mater. Res.69 (2004) 216. PMid: 15057994; 10.1002/jbm.a.20070Search in Google Scholar
[25] M.S.Amer: Raman Spectroscopy for Soft Matter Applications, John Wiley & Sons, Inc, 2009. 10.1002/9780470475997Search in Google Scholar
[26] H.Ghomi H, M.H.Fathi, H.Edris: J. Sol-Gel Sci. Technol.58 (2011) 642. 10.1007/s10971-011-2439-2Search in Google Scholar
[27] H.Ghomi H, M.H.Fathi, H.Edris: Mater. Res. Bull.47 (2012) 3523. 10.1016/j.materresbull.2012.06.066Search in Google Scholar
[28] I.D.Xynos, A.J.Edgar, L.D.K.Buttery, L.L.Hench, J.M.Polak: J. Biomed.Mater. Res.55(2001) 151. 10.1002/1097-4636(200105)55:2Search in Google Scholar
[29] W.Y.Zhai, H.X.Lu, L.Chen, X.T.Lin, Y.Huang, K.R.Dai, K.Naoki, G.Chen, J.Chang: Acta Biomater.8 (2012) 341. PMid: 21964215; 10.1016/j.actbio.2011.09.008Search in Google Scholar PubMed
[30] M.Diba M, O.M.Goudouri, F.Tapia, A.R.Boccaccini: Curr. Opin. Solid State Mater. Sci.18 (2014) 147. 10.1016/j.cossms.2014.02.004Search in Google Scholar
[31] D.Dufrane, C.Delloye, J.Mckay, P.N.De Aza, S.De Aza, Y.J.Schaneider, M.Anseau: J. Mat. Sci. Mater. Med.14 (2003) 33. 10.1023/A:1021545302732Search in Google Scholar
[32] H.Ghomi, M.Jaberzadeh, M.H.Fathi: J. Alloys Compd.509 (2011) 63. 10.1016/j.jallcom.2010.10.106Search in Google Scholar
[33] J.Lu, M.Descamps, J.Dejou, G.Koubi, P.Hardouin, J.Lemaitre, J.P.Proust: J. Biomed. Mater. Res.63 (2002) 408. 10.1002/jbm.10259Search in Google Scholar
[34] N.Tamai, A.Myoui, T.Tomita, T.Nakase, J.Tanaka, T.Ochi: J. Biomed. Mater. Res.59 (2002) 110. PMid: 11745543; 10.1002/jbm.1222Search in Google Scholar
[35] T.J.Webster, R.W.Siegel, R.Bizios: Biomater.20 (1999) 1221. 10.1016/S0142-9612(99)00020-4Search in Google Scholar
[36] T.J.Webster, C.Ergun, R.H.Doremus, R.W.Siegel, R.Bizios: Biomater.21 (2000) 1803. 10.1016/S0142-9612(00)00075-2Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- The Mg–Ca–O system: Thermodynamic analysis of oxide data and melting/solidification of Mg alloys with added CaO
- Thermodynamic description of the Cu–S–Sn system
- Thermophysical properties of NPG solid solution in the NPG–SCN organic system
- Magnetic properties of amorphous–nanocrystalline Fe–Cr–B–Si–Ni–Nb alloys
- Effect of sensitization on tribological behavior of AISI 304 austenitic stainless steel
- The effects of friction stir processing on the wear behavior of cast AZ91C magnesium alloy
- Effect of alumina particles on structural changes in MoS2 during a ball milling process
- Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method
- Short Communications
- A simple and economic approach to superhydrophobic films
- Cu/Ag core/shell particles via modified arc discharge method
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- The Mg–Ca–O system: Thermodynamic analysis of oxide data and melting/solidification of Mg alloys with added CaO
- Thermodynamic description of the Cu–S–Sn system
- Thermophysical properties of NPG solid solution in the NPG–SCN organic system
- Magnetic properties of amorphous–nanocrystalline Fe–Cr–B–Si–Ni–Nb alloys
- Effect of sensitization on tribological behavior of AISI 304 austenitic stainless steel
- The effects of friction stir processing on the wear behavior of cast AZ91C magnesium alloy
- Effect of alumina particles on structural changes in MoS2 during a ball milling process
- Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method
- Short Communications
- A simple and economic approach to superhydrophobic films
- Cu/Ag core/shell particles via modified arc discharge method
- DGM News
- DGM News