Startseite Experimental and theoretical study of temperature-dependent variable stiffness of magnetorheological elastomers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental and theoretical study of temperature-dependent variable stiffness of magnetorheological elastomers

  • Changle Xiang , Pu Gao , Hui Liu und Han Zhou
Veröffentlicht/Copyright: 29. Januar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The magnetorheological properties of a series of magnetorheological elastomers with ferromagnetic particles of different mass fractions and different diameters are investigated. The aim is to provide a basis for the preparation of high-performance material. The shear behavior of the magnetorheological elastomers is also investigated as a function of temperature. The results essentially reveal the temperature-dependent nature of the variable stiffness of the magnetorheological elastomers. A modified Gauss distribution columnar model of ferromagnetic particles (with a temperature-dependent magnetic permeability) and a modified super-elastic rubber matrix (with a linear thermal expansion coefficient) is developed and used to explore the nature of the temperature-dependent variable stiffness. The results suggest that the interaction between the rubber matrix and ferromagnetic particles is the most critical factor responsible for the temperature dependence and not the features of the two components themselves. On the basis of System Identification Theory, a fitting polynomial is added to modify the constitutive model, which can represent the interaction between the rubber matrix and ferromagnetic particles. Polynomial data fitting and a theoretical model were used to derive an expression for the temperature dependence. As a result, the magnetic field-induced shear modulus was obtained as a semi-empirical model. This was then used to draw maps of the temperature-induced and magnetic field-induced shear modulus. The calculated results were compared with the experimental data and the errors found to be acceptable, which verifies the effectiveness and reliability of the semi-empirical model. Finally, the temperature dependence of the shear modulus is converted into the temperature dependence of the shear stiffness.


*Correspondence address, Pu Gao, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, Beijing, P.R. China, Tel.: +86-13146948889, E-mail:

References

[1] T.Shiga, A.Okada, T.Kurauchi: J Appl. Polym. Sci.58 (1995) 787792. 10.1002/app.1995.070580411Suche in Google Scholar

[2] M.R.Jolly, J.D.Carlson, B.C.Munoz: Smart. Mater. Struct.5 (1996) 607. 10.1088/0964-1726/5/5/009Suche in Google Scholar

[3] S.A.Demchuk, V.A.Kuz'min: J. Eng. Phys. Thermophys.75 (2002) 396400. 10.1023/A:1015697723112Suche in Google Scholar

[4] M.Lokander, B.Stenberg: Polym. Test.22 (2003) 245251. 10.1016/S0142-9418(02)00043-0Suche in Google Scholar

[5] M.Lokander, B.Stenberg: Polym. Test.22 (2003) 677680. 10.1016/S0142-9418(02)00175-7Suche in Google Scholar

[6] Y.Li, J.Li, W.Li: Smart. Mater. Struct.23 (2014) 123001. 10.1088/0964-1726/23/12/123001Suche in Google Scholar

[7] L.Chen: PhD thesis, The Development and Mechanical Characterization of Magnetorheological Elastomers, University of Science and Technology of China, CHN (2009).Suche in Google Scholar

[8] W.Zhang: PhD thesis, Fabrication and Performance Investigation of Composite Magnetorheological Elastomers, University of Science and Technology of China, CHN (2011).Suche in Google Scholar

[9] Y.Fan: PhD thesis, Fabrication and Damping Properties of Cis-Polybutadiene Rubber Based Magnetorheological Elastomers,. University of Science and Technology of China, CHN (2013).Suche in Google Scholar

[10] M.Yu, X.Yan, L.Mao: Mater. Rev.21 (2007) 103107. 10.3321/j.issn:1005-023X.2007.07.028Suche in Google Scholar

[11] X.M.Dong, M.Yu, C.R.Liao: T. Nonferr. Metal. Soc.19 (2009) 611615. 10.1016/S1003-6326(10)60118-5Suche in Google Scholar

[12] B.X.Ju, M.Yu, J.Fu: Smart. Mater. Struct.21 (2012) 035001. 10.1088/0964-1726/21/3/035001Suche in Google Scholar

[13] J.M.Ginder, M.E.Nichols, L.D.Elie: 1999 Symposium on Smart Structures and Materials. (1999) 131138. 10.1117/12.352787Suche in Google Scholar

[14] M.R.Jolly, J.D.Carlson, B.C.Muñoz: J. Intel. Mat. Syst. Str.7 (1996) 613622. 10.1177/1045389X9600700601Suche in Google Scholar

[15] H.Dang, Y.S.Zhu, X.L.Gong: Chinese J. Chem. Phys.18 (2005) 971975. 10.3969/j.issn.1674-0068.2005.06.025Suche in Google Scholar

[16] Y.S.Zhu, X.L.Gong, H.Dang, X.Z.Zhang: Chinese J. Chem. Phys.19 (2006) 126130. 10.1360/cjcp2006.19(2).126.5Suche in Google Scholar

[17] Y.Shen, M.F.Golnaraghi, G.R.Heppler: J. Intel. Mat. Syst. Str.15 (2004) 2735. 10.1177/1045389X04039264Suche in Google Scholar

[18] S.W.Chen, R.Li, Z.Zhang: Smart. Mater. Struct.25 (2016) 035001. 10.1088/0964-1726/25/3/035001Suche in Google Scholar

[19] W.Zhang, X.L.Gong, L.Chen: J. Magn. Magn. Mater.322 (2010) 37973801. 10.1016/j.jmmm.2010.08.004Suche in Google Scholar

[20] H.Wang, G.Zhou, S.Fang: J. Exper. M.19 (2004) 15. 10.3969/j.issn.1001-4888.2004.01.001Suche in Google Scholar

[21] B.Ju, M.Yu, J.Fu: J. Func. Mater.43 (2012) 360362.Suche in Google Scholar

[22] T.Yildirim, M.H.Ghayesh, W.Li: Int. J. Mech. Sci.106 (2016) 157167. 10.1016/j.ijmecsci.2015.11.032Suche in Google Scholar

[23] T.Yildirim, M.H.Ghayesh, W.Li: Compos. Struct.138 (2016) 381390. 10.1016/j.compstruct.2015.11.063Suche in Google Scholar

[24] H.Sahin, X.Wang, F.Gordaninejad: J. Intel. Mat. Syst. Str.20 (2009) 22152222. 10.1177/1045389X09351608Suche in Google Scholar

[25] W.Zhang, X.L.Gong, W.Q.Jiang, Y.C.Fan: Smart Mater. Struct.19 (2010) 085008. 10.1088/0964–1726/19/8/085008Suche in Google Scholar

[26] W.Zhang, X.L.Gong, S.H.Xuan, W.Q.Jiang: Ind. Eng. Chem. Res.50 (2011) 67046712. 10.1021/ie200386xSuche in Google Scholar

[27] B.Ju, R.Tang, D.Zhang: J. Magn. Magn. Mater.374 (2015) 283288. 10.1016/j.jmmm.2014.08.012Suche in Google Scholar

[28] B.G.Wang: Powder Metallurgy Technology, 14 (1996) 145149.Suche in Google Scholar

[29] C.Jiang, D.Hu, Y.Yang: China Synthetic Rubber Industry.36 (2013) 355358. 10.3969/j.issn.1000-1255.2013.05.006Suche in Google Scholar

[30] W.B.Shangguan, Z.Lu, C.Energy: Chinese Internal Combustion Engine Engineering.24 (2003) 5055. 10.3969/j.issn.1000-0925.2003.06.014Suche in Google Scholar

[31] Q.Ren, T.Cai, C.An: J. Solid Rocket Tech.29 (2006) 130134. 10.3969/j.issn.1006-2793.2006.02.015Suche in Google Scholar

[32] Z.Deng: PhD thesis, Optimal Design and Control Strategy Research of Automotive Powertrain Magneto-Rheological Mount, Chongqing University, CHN (2015).Suche in Google Scholar

[33] K.K.Choi, W.Duan: Comput. Method. Appl. M.187 (2000) 219243. 10.1016/S0045-7825(99)00121-8Suche in Google Scholar

[34] E.Bakker, L.Nyborg, H.B.Pacejka: SAE Technical Paper Series. (1987) 421428. 10.4271/870421Suche in Google Scholar

[35] E.Bakker, H.B.Pacejka, L.Lider: SAE Transaction. (1989) 8796. 10.4271/890087Suche in Google Scholar

[36] H.B.Pacejka, E.Bakker: Vehicle Syst. Dyn.21 (1993) 118. 10.1080/00423119208969994Suche in Google Scholar

[37] H.K.Guo, D.Lu, S.K.Chen: Vehicle Syst. Dyn.43 (2005) 341358. 10.1080/00423110500140690Suche in Google Scholar

[38] L.Ljung: System Identification: Theory for the User, Prentice-Hall, Upper Saddle River (1999). 10.1002/047134608X.W1046Suche in Google Scholar

[39] C.Novara, T.Vincent, K.Hsu, M.Milanese, K.Poolla: Automatica, 47 (2011) 711721. 10.1016/j.automatica.2011.01.063Suche in Google Scholar

[40] F.Yu, Z.Mao, M.Jia: J. Process Contr.23 (2013) 11081115. 10.1016/j.jprocont.2013.06.014Suche in Google Scholar

[41] M.Yu, B.Ju: J. Func. Mater.42 (2011) 19391942.Suche in Google Scholar

Received: 2017-04-16
Accepted: 2017-09-18
Published Online: 2018-01-29
Published in Print: 2018-02-12

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111590/pdf?lang=de
Button zum nach oben scrollen