Hydrogen sorption and corrosion properties of La2Ni9CoSn0.2 alloy
-
Krystyna Giza
, Lidia Adamczyk , Henryk Drulis und Alicja Hackemer
Abstract
The hydrogenation and corrosion behaviour of La2Ni9 · CoSn0.2 alloy was analysed in respect of its use in Ni–MH batteries. It has been proved that the presence of tin in the alloy causes a decrease in hydrogen equilibrium pressure. In the electrochemical studies several techniques, such as chronopotentiometry, multi-potential steps, linear sweep voltammetry and the potentiokinetic polarization were applied to characterize the electrochemical properties of a La2Ni9CoSn0.2 powder composite electrode. During long cycling, powder particles undergo micro-cracking or other forms of surface development causing a progressive increase in the exchange current density of the H2O/H2 system, but, on the other hand, this increase favours corrosion processes such as the electrode material's oxidation. This is also reflected in the capacity loss values.
References
[1] D.Linden: Handbook of batteries, McGraw-Hill, New York (2001).Suche in Google Scholar
[2] I.Buchmann: Batteries in a Portable Word: A Handbook on Rechargeable Batteries for Non-Engineers, Cadex Electronics Inc, Richmond (2011).Suche in Google Scholar
[3] P.Ruetschi, F.Meli, J.Desilvestro: J. Power Sources57 (1995) 85. 10.1016/0378-7753(95)02248-1Suche in Google Scholar
[4] M.Geng, F.Feng, J.Han, A.J.Matchett, D.O.Northwood: Int. J. Hydrogen Energy26 (2001) 133. 10.1016/S0360-3199(00)00040-9Suche in Google Scholar
[5] J.Kleperis, G.Wójcik, A.Czerwiński, J.Skowroński, M.Kopczyk, M.Bełtowska-Brzezińska: J. Solid State Electrochem.5 (2001) 229. 10.1007/s100080000149Suche in Google Scholar
[6] J.G.Willems: Philips J. Res.39 (1984) 1. 10.6100/IR97016Suche in Google Scholar
[7] J.J.Reilly, G.D.Adzic, J.R.Johnson, T.Vogt, S.Mukerjee, J.McBreen: J. Alloys Compd.293–295 (1999) 569. 10.1016/S0925-8388(99)00413-2Suche in Google Scholar
[8] J.C.S.Casini, Y.P.Guo, H.K.Liu, E.A.Ferreira, R.N.Faria, H.Takiishi: Trans. Nonferrous Met. Soc. China25 (2015) 520. 10.1016/S1003-6326(15)63633-0Suche in Google Scholar
[9] M.P.Kumar, W.Zhang, K.Petrov, A.Rostami, S.Srinivasan, G.D.Adzic, J.R.Johnson, J.J.Reilly: J. Electrochem Soc.142 (1995) 3424. 10.1149/1.2049998Suche in Google Scholar
[10] R.C.Browman, C.H.Luo, C.C.Ahn, C.K.Witham, B.Fultz: J. Alloys Compd.217 (1995) 185. 10.1016/0925-8388(94)01337-3Suche in Google Scholar
[11] J.Ma, H.Pan, C.Chen, Q.Wang: J. Alloys Compd.343 (2002) 164. 10.1016/S0925-8388(02)00206-2Suche in Google Scholar
[12] H.Bala, I.Kukula, K.Giza, B.Marciniak, E.Rozycka-Sokolowska, H.Drulis: Int. J. Hydrogen Energy37 (2012) 16817. 10.1016/j.ijhydene.2012.07.126Suche in Google Scholar
[13] K.Giza, L.Adamczyk, A.Hackemer, H.Drulis, H.Bala: J. Alloys Compd.645 (2015) S490. 10.1016/j.jallcom.2014.12.075Suche in Google Scholar
[14] J.M.Joubert, M.Latroche, R.Cerny, R.C. Bowman J.A.Percheron-Guegan, K.Yvon: J. Alloys Compd.124–129 (1999) 293. 10.1016/S0925-8388(99)00311-4Suche in Google Scholar
[15] B.V.Ratnakumar, C.Witham, R.C. Bowman J.A.Hightower, B.Fultz: J. Electrochem. Soc.143 (1996) 2578. 10.1149/1.1837050Suche in Google Scholar
[16] P.H.L.Notten, R.E.F.Einerhand, J.L.C.Daams: J. Alloys Compd.210 (1994) 221. 10.1016/0925-8388(94)90142-2Suche in Google Scholar
[17] P.H.L.Notten, R.E.F.Einerhand, J.L.C.Daams: J. Alloys Compd.231 (1995) 604. 10.1016/0925-8388(95)01736-4Suche in Google Scholar
[18] K.H.J.Buschow, H.H.Van Mal: J. Less Common Metals29 (1972) 203. 10.1016/0022-5088(72)90191-9Suche in Google Scholar
[19] K.Giza, H.Bala, H.Drulis, A.Hackemer, L.Folcik: Int. J. Electrochem. Sci.7 (2012) 9881.Suche in Google Scholar
[20] K.Giza, H.Drulis: Int. J. Mater. Res.107 (2016) 103. 10.3139/146.111321Suche in Google Scholar
[21] M.Dymek, H.Bala, A.Hackemer, H.Drulis: Solid State Ionics271 (2015) 116. 10.1016/j.ssi.2014.11.005Suche in Google Scholar
[22] N.Biliškov, G.Miletić, A.Drašner, K.Prezelj: Int. J. Hydrogen Energy40 (2015) 8548. 10.1016/j.ijhydene.2015.04.076Suche in Google Scholar
[23] F.Feng, M.Geng, D.O.Northwood: Int. J. Hydrogen Energy26 (2001) 725. 10.1016/S0360-3199(00)00127-0Suche in Google Scholar
[24] C.Iwakura, T.Oura, H.Inoue, M.Matsuoka: Electrochim. Acta41 (1996) 117. 10.1016/0013-4686(95)00283-KSuche in Google Scholar
[25] Z.Liu, Z.Cao, L.Huang, M.Gao, H.Pan: J. Alloys Compd.509 (2011) 675. 10.1016/j.jallcom.2010.08.157Suche in Google Scholar
[26] Z.Li, D.Han, S.Han, X.Zhu, L.Hu, Z.Zhang, Y.Liu: Int. J. Hydrogen Energy34 (2009) 1399. 10.1016/j.ijhydene.2008.11.049Suche in Google Scholar
[27] http://webdelprofesor.ula.ve/ciencias/isolda/libros/handbook.pdf.Suche in Google Scholar
[28] H.Bala, M.Dymek, L.Adamczyk, K.Giza, H.Drulis: J. Solid State Electrochem.18 (2014) 3039. 10.1007/s10008-013-2322-xSuche in Google Scholar
[29] F.Meli, T.Sakai, A.Zuttel, L.Schlapbach: J. Alloys Compd.221 (1995) 284. 10.1016/0925-8388(94)01464-7Suche in Google Scholar
[30] Q.Tian, Y.Zhang, Z.Tan, L.Sun, F.Xu, H.Yuan: Acta Phys. Chim. Sin.22 (2006) 301. 10.1016/S1872-1508(06)60005-3Suche in Google Scholar
[31] H.L.Chu, S.J.Qiu, L.X.Sun, Y.Zhang, F.Xu, T.Jiang, W.X.Li, M.Zhu, W.Y.Hu: Electrochim. Acta52 (2007) 6700. 10.1016/j.electacta.2007.04.097Suche in Google Scholar
[32] Branko N.Popov: Corrosion Engineering: Principles and Solved Problems, Elsevier, Amsterdam (2015).Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Phase-field simulation of the solidified microstructure in a new commercial 6××× aluminum alloy ingot supported by experimental measurements
- Hydrogen sorption and corrosion properties of La2Ni9CoSn0.2 alloy
- Isothermal sections of the Co–Ni–Ti system at 950 and 1 000 °C
- Experimental and theoretical study of temperature-dependent variable stiffness of magnetorheological elastomers
- Photocatalytic properties of nano-structured carbon nitride: a comparison with bulk graphitic carbon nitride
- Effects of solution treatment on mechanical properties and corrosion resistance of 4A duplex stainless steel
- Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents
- Intermetallic precipitation in rare earth-treated A413.1 alloy: A metallographic study
- Short Communications
- Microstructure and magnetic properties of iron–cobalt-based alloys processed by metal injection moulding
- Solid-state synthesis and magnetic properties of rhombohedral phase Mg2SiNi3
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Phase-field simulation of the solidified microstructure in a new commercial 6××× aluminum alloy ingot supported by experimental measurements
- Hydrogen sorption and corrosion properties of La2Ni9CoSn0.2 alloy
- Isothermal sections of the Co–Ni–Ti system at 950 and 1 000 °C
- Experimental and theoretical study of temperature-dependent variable stiffness of magnetorheological elastomers
- Photocatalytic properties of nano-structured carbon nitride: a comparison with bulk graphitic carbon nitride
- Effects of solution treatment on mechanical properties and corrosion resistance of 4A duplex stainless steel
- Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents
- Intermetallic precipitation in rare earth-treated A413.1 alloy: A metallographic study
- Short Communications
- Microstructure and magnetic properties of iron–cobalt-based alloys processed by metal injection moulding
- Solid-state synthesis and magnetic properties of rhombohedral phase Mg2SiNi3
- DGM News
- DGM News