Synthesis, characterization and forming behavior of hybrid copper matrix composites produced using powder metallurgy
-
Ilayaraja Karuppiah
, Ranjith Kumar Poovaraj , Anandakrishnan Veeramani , Sathish Shanmugam , Ravichandran Manickam and Ravikumar Rangasamy
Abstract
Hybrid copper matrix composites containing 5 wt.% of titanium dioxide and varying graphite content (0 wt.%, 2 wt.% and 4 wt.%) were synthesized using powder metallurgy. Metallurgical studies were carried out to examine the presence and distribution of reinforcements in the copper matrix. To investigate the forming behavior of the sintered composite preforms, cold upset tests were conducted from which the true axial stress, the true hoop stress, the true hydrostatic stress and the true effective stress were evaluated and their relationship with the true axial strain was analyzed and presented. It is observed that the increase in addition of weight percentage of graphite into the copper matrix increases the true axial, the true hoop, the true hydrostatic and the true effective stresses. The variation of hardness, strength coefficient and strain hardening with respect to the addition of graphite content is also evaluated and reported.
References
[1] F.Akhlaghi, S.A.Pelaseyyed: Mater. Sci. Eng. A385 (2004) 258. 10.1016/j.msea.2004.06.050Search in Google Scholar
[2] J.Oñoro: J. Rare Met.30 (2011) 200. 10.1007/s12598-011-0224-6Search in Google Scholar
[3] R.Derakhshandeh, H.A. JenabaliJahromi: Mater. Des.32 (2011) 3377. 10.1016/j.matdes.2011.02.015Search in Google Scholar
[4] B.S.Ünlü: Mater. Des.29 (2008) 2002. 10.1016/j.matdes.2008.04.014Search in Google Scholar
[5] Z.W.Wang, M.Song, C.Sun, D.H.Xiao, Y.H.He: Mater. Sci. Eng. A527 (2010) 6537. 10.1016/j.msea.2010.07.017Search in Google Scholar
[6] H.L.Wang, R.Zhang, X.Hu, C.A.Wang, Y.Huang: J. Mater. Process. Technol.197 (2008) 43. 10.1016/j.jmatprotec.2007.06.002Search in Google Scholar
[7] M.Moazami-Goudarzi, F.Akhlaghi: Powder Technol.245 (2013) 126. 10.1016/j.powtec.2013.04.025Search in Google Scholar
[8] G.Abouelmagd: J. Mater. Process. Technol.155 (2004) 1395. 10.1016/j.jmatprotec.2004.04.223Search in Google Scholar
[9] C.Ghit, I.N.Popescu: Comput. Mater. Sci.64 (2012) 136. 10.1016/j.commatsci.2012.05.031Search in Google Scholar
[10] M.Rahimian, N.Parvin, N.Ehsani: Mater. Sci. Eng. A527 (2010) 1031. 10.1016/j.msea.2009.09.034Search in Google Scholar
[11] M.A.Baghchesara, H.Abdizadeh: J. Mech. Sci. Technol.26 (2012) 367. 10.1007/s12206-011-1101-9Search in Google Scholar
[12] J.K.Chen, I.S.Huang: Composites Part B Eng.44 (2013) 698. 10.1016/j.compositesb.2012.01.083Search in Google Scholar
[13] X.Q.Zhang, Y.H.Peng, M.Q.Li, S.C.Wu, X.Y.Ruan: J. Mater. Eng. Perform.9 (2000) 164. 10.1361/105994900770346114Search in Google Scholar
[14] H.Izadi, A.Nolting, C.Munro, D.P.Bishop, K.P.Plucknett, A.P.Gerlich: J. Mater. Process. Technol.213 (2013) 1900. 10.1016/j.jmatprotec.2013.05.012Search in Google Scholar
[15] R.E.D.Mann, R.L.HexemerJr, I.W.Donaldson, D.P.Bishop: Mater. Sci. Eng. A528 (2011) 5476. 10.1016/j.msea.2011.03.081Search in Google Scholar
[16] R.Narayanasamy, V.Senthilkumar, K.S.Pandey: J. Mater. Sci.43 (2008) 102. 10.1007/s10853-007-2124-6Search in Google Scholar
[17] J. AppaRao, J. BabuRao, S.Kamaluddin, M.M.M.Sarcar, N.R.M.R.Bhargava: Mater. Des.30 (2009) 2143. 10.1016/j.matdes.2008.08.028Search in Google Scholar
[18] R.Narayanasamy, V.Senthilkumar, K.S.Pandey: J. Mater. Sci.43 (2008) 102. 10.1007/s10853-007-2124-6Search in Google Scholar
[19] J.C.Shao, B.L.Xiao, Q.Z.Wang, Z.Y.Ma, Y.Liu, K.Yang: Mater. Sci. Eng. A527 (2010) 7865. 10.1016/j.msea.2010.08.080Search in Google Scholar
[20] M.A.Taha, N.A.El-Mahallawy, A.M.El-Sabbagh: J. Mater. Process. Technol.202 (2008) 380. 10.1016/j.jmatprotec.2007.07.047Search in Google Scholar
[21] M.Sumathi, N.Selvakumar, R.Narayanasamy: Mater. Des.39 (2012) 1. 10.1016/j.matdes.2012.02.004Search in Google Scholar
[22] K.Rajkumar, S.Aravindan: Tribol. Int.44 (2011) 347. 10.1016/j.triboint.2010.11.008Search in Google Scholar
[23] S.Rathod, O.P.Modi, B.K.Prasad, A.Chrysanthou, D.Vallauri, V.P.Deshmukh, A.K.Shah: Mater. Sci. Eng. A502 (2009) 91. 10.1016/j.msea.2008.10.002Search in Google Scholar
[24] W.Xu, R.Hu, J.S.Li, H.Z.Fu: Trans. Nonferrous Met. Soc. China21 (2011) 2237. 10.1016/S1003-6326(11)61001-7Search in Google Scholar
[25] Y.H.Liang, Q.Zhao, Z.H.Zhang, X.J.Li, L.Q.Ren: Int. J. Refract. Met. Hard Mater.46 (2014) 71. 10.1016/j.ijrmhm.2014.05.017Search in Google Scholar
[26] X.Zhou, K.Q.Feng, S.F.Wei, R.Zhang, J.Xiong, H.Y.Fan: Int. J. Refract. Met. Hard Mater.31 (2012) 109. 10.1016/j.ijrmhm.2011.09.013Search in Google Scholar
[27] K.Raza, F.A.Khalid: J. Alloys Compd.615 (2014) 111. 10.1016/j.jallcom.2014.06.139Search in Google Scholar
[28] S.Oh, M.Kim, J.Choe, D.G.Lee: Compos. Struct.147 (2016) 294. 10.1016/j.compstruct.2016.03.048Search in Google Scholar
[29] R.R.Jiang, X.F.Zhou, Q.L.Fang, Z.P.Liu: Mater. Sci. Eng. A645 (2016) 124. 10.1016/j.msea.2015.12.039Search in Google Scholar
[30] F.Y.Chen, J.M.Ying, Y.F.Wang, S.Y.Du, Z.P.Liu, Q.Huang: Carbon96 (2016) 836. 10.1016/j.carbon.2015.10.023Search in Google Scholar
[31] J.Grzonka, M.J.Kruszewski, M.Rosiński, Ł.Ciupiński, A.Michalski, K.J.Kurzydłowski: Mater. Charact.99 (2015) 188. 10.1016/j.matchar.2014.11.032Search in Google Scholar
[32] Q.D.Qin, B.W.Huang, W.Li, F.Shao: J. Alloys Compd.672 (2016) 590. 10.1016/j.jallcom.2016.02.174Search in Google Scholar
[33] A.K.Shukla, NirajNayan, S.V.S.N.Murty, S.C.Sharma, P.Chandran, S.R.Bakshi, K.M.George: Mater. Sci. Eng. A560 (2013) 365. 10.1016/j.msea.2012.09.080Search in Google Scholar
[34] V.Rajkovic, D.Bozic, J.Stasic, H.W.Wang, M.T.Jovanovic: Powder Technol.268 (2014) 392. 10.1016/j.powtec.2014.08.051Search in Google Scholar
[35] D.D.Zhang, Z.J.Zhan: J. Alloys Compd.654 (2016) 226. 10.1016/j.jallcom.2015.09.013Search in Google Scholar
[36] Q.Liu, X.He, S.Ren, C.Zhang, T.T.Liu, X.H.Qu: J. Alloys Compd.587 (2014) 255. 10.1016/j.jallcom.2013.09.207Search in Google Scholar
[37] H.Bai, N.G.Ma, J.Lang, Y.Jin, C.X.Zhu, Y.Ma: Mater. Des.46 (2013) 740. 10.1016/j.matdes.2012.09.053Search in Google Scholar
[38] H.J.Yang, R.Y.Luo, S.Y.Han, M.D.Li: Wear268 (2010) 1337. 10.1016/j.wear.2010.02.007Search in Google Scholar
[39] N.Nemati, R.Khosroshahi, M.Emamy, A.Zolriasatein: Mater. Des.32 (2011) 3718. 10.1016/j.matdes.2011.03.056Search in Google Scholar
[40] Y.H.Liang, Q.Zhao, Z.Han, Z.H.Zhang, X.J.Li, L.Q.Ren: Corros. Sci.93 (2015) 283. 10.1016/j.corsci.2015.01.029Search in Google Scholar
[41] V.Anandakrishnan, S.Baskaran, S.Sathish: Adv. Mater. Res.651 (2013) 251. 10.4028/www.scientific.net/AMR.651.251Search in Google Scholar
[42] M.Ravichandran, V.S.Vidhya, V.Anandakrishanan: Mater. Sci.51 (2016) 589. 10.1007/s11003-016-9880-xSearch in Google Scholar
[43] S.Sivasankaran, K.Sivaprasad, R.Narayanasamy, V.K.Iyer: Powder Technol.201 (2010) 70. 10.1016/j.powtec.2010.03.013Search in Google Scholar
[44] D.R.Kumar, R.Narayanasamy, C.Loganathan: Mater. Des.34 (2012) 120. 10.1016/j.matdes.2011.07.062Search in Google Scholar
[45] S.Sivasankaran, R.Narayanasamy, T.Ramesh, M.Prabhakar: Comput. Mater. Sci.47 (2009) 46. 10.1016/j.commatsci.2009.06.013Search in Google Scholar
[46] T.Ramesh, M.Prabhakar, R.Narayanasamy: Int. J. Adv. Manuf. Technol.44 (2009) 389. 10.1007/s00170-008-1880-zSearch in Google Scholar
[47] R.Narayanasamy, T.Ramesh, K.S.Pandey: Mater. Sci. Eng. A391 (2005) 418. 10.1016/j.msea.2004.09.018Search in Google Scholar
[48] G.H.A.Bagheri: J. Alloys Compd.676 (2016) 120. 10.1016/j.jallcom.2016.03.085Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression
- Simulation of directional solidification furnace with bottom opening insulation to grow quality mc-Si ingot for PV applications
- Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size
- Tensile behavior and microstructural evolution for AZ31 magnesium alloys sheet at high strain rate
- Equal-strength precision diffusion bonding of AA6063 aluminum alloy with the surface passivated by a self-assembled monolayer
- Effect of grain size on hydration and rheological behavior of calcium aluminate cements containing spinel
- Synthesis, characterization and forming behavior of hybrid copper matrix composites produced using powder metallurgy
- Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance
- Improving the productivity and purity of vaterite produced via a refined bubbling method
- Short Communications
- Microstructure of spherical particles generated in high-speed machining of an alloy steel
- ZnO whiskers synthesized by rapid microwave reduction reaction
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression
- Simulation of directional solidification furnace with bottom opening insulation to grow quality mc-Si ingot for PV applications
- Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size
- Tensile behavior and microstructural evolution for AZ31 magnesium alloys sheet at high strain rate
- Equal-strength precision diffusion bonding of AA6063 aluminum alloy with the surface passivated by a self-assembled monolayer
- Effect of grain size on hydration and rheological behavior of calcium aluminate cements containing spinel
- Synthesis, characterization and forming behavior of hybrid copper matrix composites produced using powder metallurgy
- Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance
- Improving the productivity and purity of vaterite produced via a refined bubbling method
- Short Communications
- Microstructure of spherical particles generated in high-speed machining of an alloy steel
- ZnO whiskers synthesized by rapid microwave reduction reaction
- DGM News
- DGM News