Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance
-
Yong Wen
Abstract
Binary bismuth–cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi2CdO4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20–300 nm and 5–10 μm, respectively. The formation of the binary bismuth–cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth–cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005–2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.
References
[1] L.Li, Y.Yang, G.Li, L.Zhang: Small2 (2006) 548. 10.1002/smll.200500382Search in Google Scholar PubMed
[2] Y.F.Qiu, M.L.Yang, H.B.Fan, Y.Z.Zuo, Y.Y.Shao, Y.J.Xu, X.X.Yang, S.H.Yang: CrystEngComm13 (2011) 1843. 10.1039/C0CE00508HSearch in Google Scholar
[3] L.Wang, X.H.Wang, L.X.Chen, C.P.Chen, X.Z.Xiao, L.H.Gao, Q.D.Wang: J. Alloys Compd.416 (2006) 194. 10.1016/j.jallcom.2005.08.030Search in Google Scholar
[4] M.L.Guan, D.K.Ma, S.W.Hu, Y.J.Chen, S.M.Huang: Inorg. Chem.50 (2011) 800. PMid: 21171642; 10.1021/ic101961zSearch in Google Scholar PubMed
[5] H.Su, S.L.Cao, N.N.Xia, X.J.Huang, J.Yan, Q.Y.Liang, D.S.Yuan: J. Appl. Electrochem.44 (2014) 735. 10.1007/s10800-014-0681-3Search in Google Scholar
[6] S.J.E.Carlsson, M.Azuma, Y.Shimakawa, M.Takano, A.Hewat, J.P.Attfield: J. Solid State Chem.181 (2008) 611. 10.1016/j.jssc.2007.12.037Search in Google Scholar
[7] K.Park, J.W.Choi, S.J.Kim, G.H.Kim, Y.S.Cho: J. Alloys Compd.485 (2009) 532. 10.1016/j.jallcom.2009.05.106Search in Google Scholar
[8] L.Z.Pei, T.Wei, N.Lin, H.Zhang: J. Alloys Compd.663 (2016) 677. 10.1016/j.jallcom.2015.12.177Search in Google Scholar
[9] L.Z.Pei, T.Wei, N.Lin, Z.Y.Cai, C.G.Fan, Z.Yang: J. Electrochem. Soc.163 (2016) H1. 10.1149/2.0041602jesSearch in Google Scholar
[10] Y.Dong, J.B.Zheng: J. Mol. Liq.196 (2014) 280. 10.1016/j.molliq.2014.03.009Search in Google Scholar
[11] J.A.Reynaud, B.Maltoy, P.J.Canessan: Electroanal. Chem.114 (1980) 195. 10.1016/S0022-0728(80)80447-5Search in Google Scholar
[12] L.Z.Pei, Y.Q.Pei, Y.K.Xie, C.G.Fan, H.Y.Yu: CrystEngComm15 (2013) 1729. 10.1039/C2CE26592CSearch in Google Scholar
[13] M.E.Johll, D.G.Williams, D.C.Hohnson: Electroanalysis9 (1997) 1397. 10.1002/elan.1140091805Search in Google Scholar
[14] S.D.Kirik, A.F.Shimanskiy, T.I.Koryagina: Solid State Ionics122 (1999) 249. 10.1016/S01672738(98)004445Search in Google Scholar
[15] L.W.Lin, Y.H.Tang, C.S.Chen, H.F.Xu: CrystEngComm12 (2010) 2975. 10.1039/B927384KSearch in Google Scholar
[16] L.W.Lin, Y.H.Tang, C.S.Chen: Nanotechnology20 (2009) 175601. 10.1088/09574484/20/17/175601Search in Google Scholar
[17] L.W.Lin, Y.H.He: CrystEngComm14 (2012) 3250. 10.1039/C2CE06338GSearch in Google Scholar
[18] L.W.Lin, X.Y.Sun, Y.Jiang, Y.H.He: Nanoscale5 (2013) 12518. 10.1039/C3NR04185ASearch in Google Scholar
[19] L.Z.Pei, Y.Yang, Y.Q.Pei, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Cryst. Res. Technol.46 (2011) 480. 10.1002/crat.201100096Search in Google Scholar
[20] L.L.Lan, Q.J.Li, G.R.Gu, H.F.Zhang, B.B.Liu: J. Alloys Compd.644 (2015) 430. 10.1016/j.jallcom.2015.05.078Search in Google Scholar
[21] J.H.Yang, J.H.Zheng, H.J.Zhai, L.L.Yang: Cryst. Res. Technol.44 (2009) 87. 10.1002/crat.200800294Search in Google Scholar
[22] Q.Liu, Y.Zhou, W.G.Tu, S.C.Yan, Z.G.Zou: Inorg. Chem.53 (2014) 359. 10.1021/ic402292aSearch in Google Scholar PubMed
[23] F.F.Wang, Y.Xing, Z.M.Su, S.Y.Song: Mater. Res. Bull.48 (2013) 2654. 10.1016/j.materresbull.2013.03.036Search in Google Scholar
[24] L.Z.Pei, S.Wang, Y.X.Jiang, Y.Li, Y.K.Xie, Y.H.Guo: CrystEngComm15 (2013) 7815. 10.1039/C3CE40989ASearch in Google Scholar
[25] K.Zhao, G.F.Du, G.H.Qin, Y.J.Liu, H.Y.Zhao: Mater. Lett.141 (2015) 351. 10.1016/j.matlet.2014.11.074Search in Google Scholar
[26] Z.N.Liu, H.C.Zhang, S.F.Hou, H.Y.Ma: Microchim. Acta177 (2012) 427. 10.1007/s00604-012-0801-xSearch in Google Scholar
[27] F.G.Xu, F.Wang, D.G.Yang, Y.Gao, H.M.Li: Mater. Sci. Eng. C38 (2014) 292. PMid: 24656381; 10.1016/j.msec.2014.02.017Search in Google Scholar PubMed
[28] C.Y.Deng, J.H.Chen, X.L.Chen, M.D.Wang, Z.Nie, S.Z.Yao: Electrochim. Acta54 (2009) 3298. 10.1016/j.electacta.2008.11.038Search in Google Scholar
[29] S.Ge, M.Yan, J.Lu, M.Zhang, F.Yu, J.Yu, X.Song, S.Yu: Biosen. Bioelectron.31 (2012) 49. PMid: 22019101; 10.1016/j.bios.2011.09.038Search in Google Scholar PubMed
[30] C.H.Xiao, J.H.Chen, B.Liu, X.C.Chu, L.Wu, S.Z.Yao: Phys. Chem. Chem. Phys.13 (2011) 1568. 10.1039/C0CP00980FSearch in Google Scholar PubMed
[31] L.B.Qu, S.Yang, G.Li, R.Yang, J.Li, L.L.Yu: Electrochim. Acta56 (2011) 2934. 10.1016/j.electacta.2010.12.090Search in Google Scholar
[32] M.L.Ye, B.Xu, W.D.Zhang: Microchim. Acta172 (2011) 439. 10.1007/s00604-010-0508-9Search in Google Scholar
[33] L.Z.Pei, T.Wei, N.Lin, H.Zhang, C.G.Fan, Z.Yang: J. Alloys Compd.679 (2016) 39. 10.1149/2.0041602jesSearch in Google Scholar
[34] X.J.Wang, C.N.Luo, L.L.Li, H.M.Duan: J. Electroanal. Chem.757 (2015) 100. 10.1016/j.jelechem.2015.09.023Search in Google Scholar
[35] Y.P.Dong, L.Z.Pei, X.F.Chu, W.B.Zhang, Q.F.Zhang: Electrochim. Acta55 (2010) 5135. 10.1016/j.electacta.2009.11.042Search in Google Scholar
[36] G.Ziyatdinova, L.Grigor'eva, M.Morozov, A.Gilmutdinov, H.Budnikov: Microchim. Acta165 (2009) 359. 10.1007/s00604-009-0142-6Search in Google Scholar
[37] M.Ahmad, C.F.Pan, J.Zhu: J. Mater. Chem.20 (2010) 7169. 10.1039/C0JM01055CSearch in Google Scholar
[38] X.F.Tang, Y.Liu, H.Q.Hou, T.Y.You: Talanta80 (2010) 2182. PMid: 20152470; 10.1016/j.talanta.2009.11.027Search in Google Scholar PubMed
[39] N.Spataru, B.V.Sarada, E.Papa, D.A.Tryk, A.Fujishima: Anal. Chem.73 (2001) 514. PMid: 11217755; 10.1021/ac000220vSearch in Google Scholar PubMed
[40] P.Dharmapandian, S.Rajesh, S.Rajasingh, A.Rajendran, C.Karunakaran: Sens. Actuators B148 (2010) 17. 10.1016/j.snb.2010.04.023Search in Google Scholar
[41] Z.Chen, H.Zheng, C.Lu, Y.Zu: Langmuir23 (2007) 10816. 10.1021/la701667pSearch in Google Scholar PubMed
[42] S.M.Chen, J.Y.Chen, R.Thangamuthu: Electroanalysis20 (2008) 1565. 10.1002/elan.200804213Search in Google Scholar
[43] A.Salimi, R.Hallaj: Talanta66 (2005) 967. PMid: 18970079; 10.1016/j.talanta.2004.12.040Search in Google Scholar PubMed
[44] S.D.Fei, J.H.Chen, S.Z.Yao, G.H.Deng, D.L.He, Y.F.Kuang: Anal. Biochem.339 (2005) 29. PMid: 15766706; 10.1016/j.ab.2005.01.002Search in Google Scholar PubMed
[45] K.Mohsen, S.M.Rasoul, K.M.Hassan, A.Khadijeh: Chin. J. Catal.35 (2014) 1166. 10.1016/S1872-2067(14)60065-6Search in Google Scholar
[46] A.E.Ali, D.T.Samira, K.M.Hassan: Anal. Sci.27 (2011) 409. 10.2116/analsci.27.409Search in Google Scholar PubMed
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression
- Simulation of directional solidification furnace with bottom opening insulation to grow quality mc-Si ingot for PV applications
- Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size
- Tensile behavior and microstructural evolution for AZ31 magnesium alloys sheet at high strain rate
- Equal-strength precision diffusion bonding of AA6063 aluminum alloy with the surface passivated by a self-assembled monolayer
- Effect of grain size on hydration and rheological behavior of calcium aluminate cements containing spinel
- Synthesis, characterization and forming behavior of hybrid copper matrix composites produced using powder metallurgy
- Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance
- Improving the productivity and purity of vaterite produced via a refined bubbling method
- Short Communications
- Microstructure of spherical particles generated in high-speed machining of an alloy steel
- ZnO whiskers synthesized by rapid microwave reduction reaction
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression
- Simulation of directional solidification furnace with bottom opening insulation to grow quality mc-Si ingot for PV applications
- Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size
- Tensile behavior and microstructural evolution for AZ31 magnesium alloys sheet at high strain rate
- Equal-strength precision diffusion bonding of AA6063 aluminum alloy with the surface passivated by a self-assembled monolayer
- Effect of grain size on hydration and rheological behavior of calcium aluminate cements containing spinel
- Synthesis, characterization and forming behavior of hybrid copper matrix composites produced using powder metallurgy
- Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance
- Improving the productivity and purity of vaterite produced via a refined bubbling method
- Short Communications
- Microstructure of spherical particles generated in high-speed machining of an alloy steel
- ZnO whiskers synthesized by rapid microwave reduction reaction
- DGM News
- DGM News