Startseite A general approach on the modelling of incubation in ferrite transformation using non-isothermal kinetics data for 22MnB5 steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A general approach on the modelling of incubation in ferrite transformation using non-isothermal kinetics data for 22MnB5 steel

  • Xiangjun Chen , Bernard Rolfe , Amir Abdollahpoor , Namin Xiao und Dianzhong Li
Veröffentlicht/Copyright: 30. Mai 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The most challenging part, in modelling tailored hot stamping processes, is the variable cooling transformation that occurs in real industrial processes. In this study, analytical equations are first fitted to both experimental isothermal and continuous cooling transformation data. Then, an optimized fitting method with a weight coefficient is introduced that considers two transformation data to provide a more accurate transformation prediction. Finally, the generalized calculated result of incubation time using Rios's proposed method based on optimized continuous cooling transformation curves is contrasted against one calculated with a modified generalized calculated method. The results show that the consideration of the current temperature and cooling rate increases the accuracy of incubation time predictions as the gradient of cooling rate increases.


*Correspondence address, Dr. Dianzhong Li, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China, Tel.: +862423971973, Fax: +862483970097, E-mail: , Web: http://www.synl.ac.cn/english/part_model.htm

References

[1] R.George, A.Bardelcik, M.J.Worswick: J. Mater. Process. Technol.212 (2012) 2386. 10.1016/j.jmatprotec.2012.06.028Suche in Google Scholar

[2] B.Tang, Z.Yuan, G.Cheng, L.Huang, W.Zheng, H.Xie: Mater. Sci. Eng. A.585 (2013) 304. 10.1016/j.msea.2013.07.059Suche in Google Scholar

[3] W.Liang, L.Wang, Y.Liu, Y.Wang, Y.Zhang: Procedia Eng.81 (2014) 1731. 10.1016/j.proeng.2014.10.222Suche in Google Scholar

[4] E.J.Mittemeijer: J. Mater. Sci.27 (1992) 3977. 10.1007/BF01105093Suche in Google Scholar

[5] F.Liu, F.Sommer, C.Bos, E.J.Mittemeijer: Int. Mater. Rev.52 (2007) 193. 10.1179/174328007X160308Suche in Google Scholar

[6] E.J.Mittemeijer: Fundamentals of Materials Science, Springer, Berlin (2011). 10.1007/978-3-642-10500-5Suche in Google Scholar

[7] M.Avrami: J. Chem. Phys.7 (1939) 1103. 10.1063/1.1750380Suche in Google Scholar

[8] E.Hawbolt, B.Chau, J.Brimacombe: Metall. Trans. A14 (1983) 1803. 10.1007/BF02645550Suche in Google Scholar

[9] X.Chen, N.Xiao, D.Li, G.Li, G.Sun: Modell. Simul. Mater. Sci. Eng.22 (2014) 065005. 10.1088/0965-0393/22/6/065005Suche in Google Scholar

[10] A.Abdollahpoor, X.Chen, M.P.Pereira, N.Xiao, B.F.Rolfe: J. Mater. Process. Technol.228 (2016) 125. 10.1016/j.jmatprotec.2014.11.033Suche in Google Scholar

[11] M.Avrami: J. Chem. Phys.8 (1940) 212. 10.1063/1.1750631Suche in Google Scholar

[12] M.Avrami: J. Chem. Phys.9 (1941) 177. 10.1063/1.1750872Suche in Google Scholar

[13] M.Umemoto, K.Horiuchi, I.Tamura: Trans. Iron Steel Inst. Jpn.23 (1983) 690. 10.2355/isijinternational1966.23.690Suche in Google Scholar

[14] P.R.Rios: Acta Mater.53 (2005) 4893. 10.1016/j.actamat.2005.07.005Suche in Google Scholar

[15] X.Chen, N.Xiao, M.Cai, D.Li, G.Li, G.Sun, B.F.Rolfe: Metall. Mater. Trans. A47 (2016) 4732. 10.1007/s11661-016-3608-2Suche in Google Scholar

[16] J.Trzaska, L.Dobrzański: J. Mater. Process. Technol.192 (2007) 504. 10.1016/j.jmatprotec.2007.04.099Suche in Google Scholar

Received: 2016-11-25
Accepted: 2017-03-06
Published Online: 2017-05-30
Published in Print: 2017-06-12

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111501/html?lang=de
Button zum nach oben scrollen