Active soldering of aluminum–graphite composite to aluminum using Sn3.5Ag4Ti0.5Cu active filler
-
Lung-Chuan Tsao
Abstract
In this work, 6061–Al alloy–graphite (Al–Gr) composites were fabricated via the squeeze casting method. Al/Al–Gr joints were formed by direct active soldering with Sn3.5Ag4Ti0.5Cu active filler. The joint microstructures were examined using optical microscopy and scanning electron microscopy coupled with energy dispersive spectrometry. The Sn3.5Ag4Ti0.5Cu active filler can successfully join Al–Gr composite to 6061–Al alloy at a temperature of 250°C. During direct active soldering, Al dissolves into the active filler zone to form a coarse Al–Ag–Sn solid solution around the active filler. The shear-tested bonding strengths were 14.30 ± 1.57 MPa for Al/Al, 8.45 ± 1.37 MPa for Al–Gr/Al, and 8.15 ± 1.43 MPa for Al–Gr/Al–Gr joints. In the Al/Al–Gr joints, the fractures occurred through the active filler/Al–Gr interface.
References
[1] J.Guosheng, K.Kuang, D.Zhu, in: K.Kuang, F.Kim, S.S.Cahill (Eds.), RF and Microwave Microelectronics Packaging, Springer (2010) 233. 10.1007/978-1-4419-0984-8_11Suche in Google Scholar
[2] C.Zweben: Power Electron. Technol.32 (2006) 40.Suche in Google Scholar
[3] M.Ishiharaa, J.Sumita, T.Shibata, T.Iyoku, T.Oku: Nucl. Eng. Des.233 (2004) 251. 10.1016/j.nucengdes.2004.08.012Suche in Google Scholar
[4] K.Esashi: PhD thesis, Fabrication and mechanical properties of graphite fiber reinforced aluminum alloys, British Columbia University, Canada (1976).Suche in Google Scholar
[5] J.Lin, N.Ma, Y.Lei, H.Murakawa: Trans. Joining Weld. Res. Inst.40 (2011) 101. 10.4028/www.scientific.net/AMR.629.131Suche in Google Scholar
[6] S.Y.Chang, L.C.Tsao, M.J.Chiang, C.N.Tung, G.H.Pan, T.H.Chuang: J. Mater. Eng. Perform.12 (2003) 383. 10.1361/105994903770342890Suche in Google Scholar
[7] S.Y.Chang, T.H.Chuang, L.C.Tsao, C.L.Yang, Z.S.Yang: J. Mater. Process. Technol.202 (2008) 22. 10.1016/j.jmatprotec.2007.08.045Suche in Google Scholar
[8] R.Koleňák, M.Prach: Adv. Mater. Sci. Eng.6 (2014) 1. 10.1155/2014/729135Suche in Google Scholar
[9] R.Koleňák, P.Šebo, M.Provaznik, M.Koleňakova, K.Ulrich: Mater. Des.32 (2011) 3997. 10.1016/j.matdes.2011.03.022Suche in Google Scholar
[10] L.C.Tsao: Mater. Sci. Eng. A565 (2013) 63. 10.1016/j.msea.2012.12.036Suche in Google Scholar
[11] L.C.Tsao: J. Mater. Sci.: Mater. Electron.25 (2014) 233. 10.1007/s10854-013-1577-4Suche in Google Scholar
[12] J.K.Chen, I.S.Huang: Composites Part B44 (2013) 698. 10.1016/j.compositesb.2012.01.083Suche in Google Scholar
[13] C.Zhou, G.Ji, Z.Chen, M.L.Wang, A.Addad, D.Schryvers, H.Wang: Mater. Des.63 (2014) 719. 10.1016/j.matdes.2014.07.009Suche in Google Scholar
[14] L.C.Tsao: Mater. Des.56 (2014) 318. 10.1016/j.matdes.2013.11.021Suche in Google Scholar
[15] A.J.McAlister, D.J.Kahan: Bull. Alloy Phase Diagrams4 (1983) 410. 10.1007/BF02868095Suche in Google Scholar
[16] W.B.Guo, X.S.Leng, J.C.Yan, Y.M.Tan: Welding J.94 (2015) 189 s.Suche in Google Scholar
[17] ASM Alloy Phase Diagrams Center, 2011; data from Kattner, U., Silver–Aluminium–Tin, Ternary Alloys, Vol. 1, VCH (1988) 74.Suche in Google Scholar
[18] Y.Yao, F.Xue, J.Zhou, X.Chen: Proc. Mater. Sci. Technol. Conf. (MS&T'14), Pittsburgh, PA, USA (2014) 1359.Suche in Google Scholar
[19] W.Y.Yu, S.H.Liu, X.Y.Liu, M.P.Liu, W.G.Shi: J. Mater. Process. Technol.221 (2015) 285. 10.1016/j.jmatprotec.2015.02.028Suche in Google Scholar
[20] K.Frisk: Calphad27 (2003) 367. 10.1016/j.calphad.2004.01.004Suche in Google Scholar
[21] A.El Refaey, W.Tillman: Welding J.87 (2008) 113.Suche in Google Scholar
[22] S.B.Li, G.P.Bei, H.X.Zhai, Y.Zhou: J. Am. Ceram. Soc.89 (2006) 3617. 10.1111/j.1551-2916.2006.01275.xSuche in Google Scholar
[23] Y.C.Zhou, H.Y.Dong, X.H.Wang, C.K.Yan: Mater. Res. Innovations6 (2002) 219. 10.1007/s10019-002-0200-8Suche in Google Scholar
[24] S.B.Li, H.X.Zhai, G.P.Bei, Y.Zhou: Mater. Lett.60 (2006) 3530. 10.1016/j.matlet.2006.03.045Suche in Google Scholar
[25] G.P.Bei, S.BLi, H.X.Zhai, Y.Zhou: Mater. Res. Bull.42 (2007) 1995. 10.1016/j.materresbull.2007.02.006Suche in Google Scholar
[26] C.L.Yeh, C.W.Kuo: J. Alloys Comp.502 (2010) 461. 10.1016/j.jallcom.2010.04.196Suche in Google Scholar
[27] H.Vincent, C.Vincent, B.F.Mentzen, S.Pastor, J.Bouix: Mater. Sci. Eng. A256 (1998) 83. 10.1016/S0921-5093(98)00840-5Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Assessment of the contact behavior of a soft hemispherical finger tip in curved profile grasping
- Dynamic crushing behavior of functionally graded honeycomb structures with random defects
- Development of a mathematical model and its application to the stress evolution of a multi-crystalline silicon billet during continuous casting
- Improved polycrystalline Ni54Mn16Fe9Ga21 high-temperature shape memory alloy by γ phase distributing along grain boundaries
- Spheroidal graphite cast iron property enhancement by heat treatment
- On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron
- Electrochemical hydrogen storage behaviour of as-cast and as-spun RE–Mg–Ni–Mn-based alloys applied to Ni–MH battery
- Dry sliding friction and wear behavior of bronze matrix composites reinforced with Ni3Al particles: Comparison with conventional brake lining
- Microstructure optimization and mechanical properties of lightweight Al–Mg2Si in-situ composite
- Densification and mechanical properties of ZrO2–CaAl4O7 composites obtained by reaction sintering
- Active soldering of aluminum–graphite composite to aluminum using Sn3.5Ag4Ti0.5Cu active filler
- Short Communications
- Effect of hot differential speed rolling on microstructure and mechanical properties of Fe3Al-based intermetallic alloy
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Assessment of the contact behavior of a soft hemispherical finger tip in curved profile grasping
- Dynamic crushing behavior of functionally graded honeycomb structures with random defects
- Development of a mathematical model and its application to the stress evolution of a multi-crystalline silicon billet during continuous casting
- Improved polycrystalline Ni54Mn16Fe9Ga21 high-temperature shape memory alloy by γ phase distributing along grain boundaries
- Spheroidal graphite cast iron property enhancement by heat treatment
- On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron
- Electrochemical hydrogen storage behaviour of as-cast and as-spun RE–Mg–Ni–Mn-based alloys applied to Ni–MH battery
- Dry sliding friction and wear behavior of bronze matrix composites reinforced with Ni3Al particles: Comparison with conventional brake lining
- Microstructure optimization and mechanical properties of lightweight Al–Mg2Si in-situ composite
- Densification and mechanical properties of ZrO2–CaAl4O7 composites obtained by reaction sintering
- Active soldering of aluminum–graphite composite to aluminum using Sn3.5Ag4Ti0.5Cu active filler
- Short Communications
- Effect of hot differential speed rolling on microstructure and mechanical properties of Fe3Al-based intermetallic alloy
- DGM News
- DGM News