Home The synthesis and electrochemical performance of Cu6Sn5 intermetallic nanoparticles as anode material in Li ion batteries
Article
Licensed
Unlicensed Requires Authentication

The synthesis and electrochemical performance of Cu6Sn5 intermetallic nanoparticles as anode material in Li ion batteries

  • Hongxiao Zhao , Congxu Zhu , Jing Li , Fusheng Liu and Zhi Zheng
Published/Copyright: August 3, 2016
Become an author with De Gruyter Brill

Abstract

Cu6Sn5 intermetallic nanoparticles have been successfully prepared by a simple reduction method. The crystallinity and morphology of the synthesized products were characterized by means of X-ray diffraction and scanning electron microscopy, respectively. When used as anode material, Cu6Sn5 intermetallic nanoparticles demonstrated an initial discharge capacity of 3368.2 mAh · g−1 and stable capacities of 840 mAh · g−1 after 70 cycles between 0.05 and 2.5 V at a current density of 100 mA · g−1. The charge–discharge process of Cu6Sn5 intermetallic nanoparticles was also evaluated using cyclic voltammetry. The results indicated Cu6Sn5 intermetallic nanoparticles may be an ideal anode material for Li ion batteries.


*Correspondence address, Ms Hongxiao Zhao, Xuchang University, Xuchang, Henan, 461000, China, Tel.: +86-0374-2968783, E-mail:

References

[1] J.Xie, W.T.Song, G.S.Cao, T.J.Zhu, X.B.Zhao, S.C.Zhang: RSC Adv.4 (2014) 7703. 10.1039/C3RA44242JSearch in Google Scholar

[2] J.Z.Chen, L.Yang, S.H.Fang, Z.X.Zhang, S.Hirano: Electrochim. Acta105 (2013) 629. 10.1016/j.electacta.2013.05.052Search in Google Scholar

[3] L.F.Bai, J.B.Zhu, X.D.Zhang, Y.Xie: J. Mater. Chem.22 (2012) 16957. 10.1039/c2jm30968hSearch in Google Scholar

[4] D.H.Lee, H.W.Shim, J.C.Kim, D.W.Kim: RSC Adv.4 (2014) 44563. 10.1039/C3RA43890BSearch in Google Scholar

[5] M.Kotobuki, N.Okada, K.Kanamura: Chem. Commun.47 (2011) 6144. 10.1039/c1cc10781jSearch in Google Scholar PubMed

[6] M.Latorre-Sanchez, A.Primo, H.Garcia: J. Mater. Chem.22 (2012) 21373. 10.1039/c2jm34978gSearch in Google Scholar

[7] C.D.Wang, Y.Li, Y.S.Chui, Q.H.Wu, X.F.Chen, W.J.Zhang: Nanoscale5 (2013) 10599. 10.1039/C2NR32506CSearch in Google Scholar

[8] Y.J.Zhang, L.Jiang, C.R.Wang: Nanoscale7 (2015) 11940. 10.1039/C4NR04707ASearch in Google Scholar

[9] J.Hassoun, G.A.Elia, S.Panero, B.Scrosati: J. Power Sources196 (2011) 7767. 10.1016/j.jpowsour.2011.04.028Search in Google Scholar

[10] W.R.Osorio, J.E.Spinelli, C.R.M.Afonso, L.C.Peixoto, A.Garcia: Electrochim. Acta56 (2011) 8891. 10.1016/j.electacta.2011.07.114Search in Google Scholar

[11] W.J.Cui, F.Wang, J.Wang, H.J.Liu, C.X.Wang, Y.Y.Xia: J. Power Sources196 (2011) 3633. 10.1016/j.jpowsour.2010.08.075Search in Google Scholar

[12] A.Kitada, N.Fukuda, T.Ichii, H.Sugimura, K.Murase: Electrochim. Acta98 (2013) 239. 10.1016/j.electacta.2013.03.035Search in Google Scholar

[13] M.Mladenov, P.Zlatilova, I.Dragieva, K.Klabunde: J. Power Sources162 (2006) 803. 10.1016/j.jpowsour.2005.07.017Search in Google Scholar

[14] L.G.Xue, Z.H.Fu, Y.Yao, T.Huang, A.S.Yu: Electrochim. Acta55 (2010) 7310. 10.1016/j.electacta.2010.07.015Search in Google Scholar

[15] S.B.Ni, J.J.Ma, X.H.Lv, X.L.Yang, L.L.Zhang: J. Mater. Chem. A2 (2014) 20506. 10.1039/C4TA03871ASearch in Google Scholar

Received: 2016-02-26
Accepted: 2016-05-12
Published Online: 2016-08-03
Published in Print: 2016-08-11

© 2016, Carl Hanser Verlag, München

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111398/html
Scroll to top button