Startseite Experimental study on phase relationships in the Co-rich portion of the Co–Ti–Zr system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental study on phase relationships in the Co-rich portion of the Co–Ti–Zr system

  • Yafei Pan , Peng Zhou , Yong Du , Yingbiao Peng , Chong Chen und Fenghua Luo
Veröffentlicht/Copyright: 26. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The isothermal section at 1 050 °C and the liquidus projection in the Co-rich portion of the ternary Co–Ti–Zr system were determined. The microstructures and solidification paths of the as-cast alloys were established experimentally. The constituent phases and their compositions of both as-cast and heat-treated alloys were investigated by means of optical microscopy, X-ray diffraction and electron probe microanalysis. No ternary compound was observed. For the Co-rich portion of the isothermal section at 1 050 °C, there are four three-phase regions, αCo + TiCo3 + TiCo2 (h), αCo + TiCo2 (h) + (Ti,Zr)Co2 (c), αCo + (Ti,Zr)Co2 (c) + Zr6Co23 and αCo + Zr2Co11 + Zr6Co23. For the investigated liquidus projection, there exist six primary crystallization fields: αCo, TiCo3, TiCo2 (h), (Ti,Zr)Co2 (c), Zr2Co11 and Zr6Co23; three transition invariant reactions, L + αCo → TiCo3 + TiCo2 (h), L + (Ti,Zr)Co2 (c) → αCo + TiCo2 (h), and L + Zr6Co23 → αCo + Zr2Co11; and one eutectic invariant reaction of L → αCo + (Ti,Zr)Co2 (c) + Zr6Co23.


*Correspondence address, Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University, Hunan, 410083, China. Tel.: +86 731 88836213, Fax: +86 731 88710855, E-mail:

References

[1] H.H.Xu, X.Xiong, Y.Du, P.S.Wang, Y.H.He: J. Alloys Compd.485 (2009) 249. 10.1016/j.jallcom.2009.06.037Suche in Google Scholar

[2] Y.B.Peng, P.Zhou, Y.Du, K.K.Chang: Int. J. Refract. Met. Hard Mater.40 (2013) 36. 10.1016/j.ijrmhm.2013.03.12Suche in Google Scholar

[3] P.Zhou, Y.B.Peng, Y.Du, S.Q.Wang, G.H.Wen, W.Xie, K.K.Chang: Int. J. Refract. Met. Hard Mater.41 (2013) 408. 10.106/j.ijrmhm.2013.05.015Suche in Google Scholar

[4] A.Markström, K.Frisk: CALPHAD33 (2009) 530. 10.1016/j.calphad.2009.03.002Suche in Google Scholar

[5] A.V.Davydov, U.R.Kattner, D.Josell, J.E.Blendell, R.M.Waterstrat, A.J.Shapiro, W.J.Boettinger: Metall. Mater. Trans. A32 (2001) 2175. 10.1007/s11661-001-0193-8Suche in Google Scholar

[6] A.Durga, K.C. HariKumar: CALPHAD34 (2010) 200. 10.1016/j.calphad.2010.02006Suche in Google Scholar

[7] K.C. HariKumar, P.Wollants, L.Delacy: J. Alloys Compd.206 (1994) 121. 10.1016/0925-8388(94)90019-1Suche in Google Scholar

[8] Z.Blazina, R.Trojko: J. Less-Common Met.133 (1987) 277. 10.1016/0022-5088(87)90238-4Suche in Google Scholar

[9] J.Jiang, Y.Z.Zhan, Z.Sun, D.Peng, G.H.Zhang: J. Alloys Compd.482 (2009) 127. 10.1016/j.jallcom.2009.04.069Suche in Google Scholar

[10] G.Cacciamani, R.Ferro, I.Ansara, N.Dupin: Intermetallics8 (2000) 213. 10.1016/S0966-9795(99)00098-9Suche in Google Scholar

[11] X.J.Liu, H.H.Zhang, C.P.Wang, K.Ishida: J. Alloys Compd.482 (2009) 99. 10.1016/j.jallcom.2009.04.032Suche in Google Scholar

Received: 2015-02-08
Accepted: 2015-11-05
Published Online: 2016-02-26
Published in Print: 2016-03-11

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111337/html?lang=de
Button zum nach oben scrollen