Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
-
Alina Pruna
, Dimitrios Tamvakos , Mauro Sgroi , Daniele Pullini , Esther Asedegbega Nieto and David Busquets-Mataix
Abstract
A simple chemical approach was employed to reduce graphene oxide in order to fabricate electrode coatings in close correlation with industrial production standards for supercapacitors. The morphology, structure, thermal stability and the residual oxygen functional groups in chemically reduced graphene oxide were analyzed. Cyclic voltammetry and charge/discharge measurements were employed to study the electrochemical performance of the coatings as a function of active material loading. The results showed an increase in the specific capacitance for chemically reduced graphene oxide-based coatings in comparison to commercial activated carbon, while the desired value needs to be optimized with respect to the conductivity of such materials.
References
[1] LiuC., LiF., MaL., ChengH.: Adv. Mater.22 (2010) E28. 10.1002/adma.200902153Search in Google Scholar PubMed
[2] IcardiU.A., SpecchiaS., FontanaG.J.R., SaraccoG., SpecchiaV.: J. Power Sources176 (2008) 460. 10.1016/j.jpowsour.2007.08.048Search in Google Scholar
[3] Carrera-CerritosR., BaglioV., AricòA.S., Ledesma-GarcíaJ., SgroiM.F., PulliniD., PrunaA.J., MataixD.B., RamírezR. Fuentes, ArriagaL.G.: Appl. Catal. B Environ.144 (2014) 554. 10.1016/j.apcatb.2013.07.057Search in Google Scholar
[4] SimonP., GogotsiY.: Acc. Chem. Res.46 (2013) 1094. 10.1021/ar200306bSearch in Google Scholar PubMed
[5] CembreroJ., PrunaA., PulliniD., Busquets-MataixD.: Ceram. Int.40 (2014) 10351. 10.1016/j.ceramint.2014.03.008Search in Google Scholar
[6] ZhangL., YangX., ZhangF., LongG., ZhangT., LengK., ZhangY., HuangY., MaY., ZhangM., ChenY.: J. Am. Chem. Soc.135 (2013) 5921. 10.1021/ja308249kSearch in Google Scholar PubMed
[7] YanJ., XiaoY., NingG., WeiT., FanZ.: RSC Adv.3 (2013) 2566. 10.1039/c2ra21546bSearch in Google Scholar
[8] YuD., DaiL.: J. Phys. Chem. Lett.1 (2010) 467. 10.1021/jz100533tSearch in Google Scholar
[9] YanJ., WeiT., ShaoB., MaF., FanZ., ZhangM., ZhengC., ShangY., QianW., WeiF.: Carbon48 (2010) 1731. 10.1016/j.carbon.2009.09.066Search in Google Scholar
[10] LvW., SunF., TangD.-M., FangH.-T., LiuC., YangQ.-H., ChengH.M.: J. Mater. Chem.21 (2011) 9014. 10.1039/c0jm02852eSearch in Google Scholar
[11] ZhaoB., LiuP., JiangY., PanD., TaoH., SongJ., FangT., XuW.: J. Power Sources198 (2012) 423. 10.1016/j.jpowsour.2011.09.074Search in Google Scholar
[12] ChartarrayawadeeW., MoultonS.E., TooC.O., KimB.C., YepuriR., RomeoT., WallaceG.G.: J. Appl. Electrochem.43 (2013) 865. 10.1007/s10800-013-0575-9Search in Google Scholar
[13] ZhouY., BaoQ., TangL.A.L., ZhongY., LohK.P.: Chem. Mater.21 (2009) 2950. 10.1021/cm8018082Search in Google Scholar
[14] AkhavanO., GhaderiE.: Carbon50 (2012) 1853. 10.1016/j.carbon.2011.12.035Search in Google Scholar
[15] PrunaA., PulliniD., BusquetsD.: J. Nanoparticle Res.15 (2013) 1605. 10.1007/s11051-013-1605-6Search in Google Scholar
[16] Fernández-MerinoM.J., GuardiaL., ParedesJ.I., Villar-RodilS., Solís-FernándezP., Martínez-AlonsoA., TascónJ.M.D.: J. Phys. Chem. C.114 (2010) 6426. 10.1021/jp100603hSearch in Google Scholar
[17] ZhangJ., YangH., ShenG., ChengP., ZhangJ., GuoS.: Chem. Commun.46 (2010) 1112. 10.1039/b917705aSearch in Google Scholar PubMed
[18] StankovichS., DikinD.A., PinerR.D., KohlhaasK.A., KleinhammesA., JiaY., WuY., NguyenS.T., RuoffR.S.: Carbon45 (2007) 1558. 10.1016/j.carbon.2007.02.034Search in Google Scholar
[19] StollerM.D., RuoffR.S.: Energy Environ. Sci.3 (2010) 1294. 10.1039/c0ee00074dSearch in Google Scholar
[20] StollerM.D., ParkS., ZhuY., AnJ., RuoffR.S.: Nano Lett.8 (2008) 3498. 10.1021/nl802558ySearch in Google Scholar PubMed
[21] WuH., ZhaoW., HuH., ChenG.: J. Mater. Chem.21 (2011) 8626. 10.1039/c0jm01883jSearch in Google Scholar
[22] MeiX., OuyangJ.: Carbon49 (2011) 5389. 10.1016/j.carbon.2011.08.019Search in Google Scholar
[23] ParkS., AnJ., JungI., PinerR.D., AnS.J., LiX., VelamakanniA., RuoffR.S.: Nano Lett.9 (2009) 1593. 10.1021/nl8029493Search in Google Scholar PubMed
[24] XuY., BaiH., LuG., LiC., ShiG.: J. Am. Chem. Soc.130 (2008) 5856. 10.1021/ja077102aSearch in Google Scholar PubMed
[25] BoZ., ShuaiX., MaoS., YangH., QianJ., ChenJ., YanJ., CenK.: Sci. Rep.4 (2014) 4684. 10.1038/srep04684Search in Google Scholar PubMed PubMed Central
[26] LiJ., XiaoG., ChenC., LiR., YanD.: J. Mater. Chem. A1 (2013) 1481. 10.1039/c2ta00283cSearch in Google Scholar
[27] LeiZ., LuL., ZhaoX.S.: Energy Environ. Sci.5 (2012) 6391. 10.1039/c1ee02478gSearch in Google Scholar
[28] LiD., MüllerM.B., GiljeS., KanerR.B., WallaceG.G.: Nat. Nanotechnol.3 (2008) 101. 10.1038/nnano.2007.451Search in Google Scholar PubMed
[29] LiuF., SeoT.S.: Adv. Funct. Mater.20 (2010) 1930. 10.1002/adfm.200902062Search in Google Scholar
[30] YangD.-Q., SacherE.: Langmuir22 (2006) 860. 10.1021/la052922rSearch in Google Scholar PubMed
[31] YangD., VelamakanniA., BozokluG., ParkS., StollerM., PinerR.D., StankovichS., JungI., FieldD.A., C.A.VentriceJr., RuoffR.S.: Carbon47 (2009) 145. 10.1016/j.carbon.2008.09.012Search in Google Scholar
[32] JeongH.-K., LeeY.P., LahayeR.J.W.E., ParkM.-H., AnK.H., KimI.J., YangC.W., ParkC.Y., RuoffR.S., LeeY.H.: J. Am. Chem. Soc.130 (2008) 1362. 10.1021/ja076473oSearch in Google Scholar PubMed
[33] GaoW., AlemanyL.B., CiL., AjayanP.M.: Nat. Chem.1 (2009) 403. 10.1038/nchem.281Search in Google Scholar PubMed
[34] BoukhvalovD.W., KatsnelsonM.I.: J. Am. Chem. Soc.130 (2008) 10697. 10.1021/ja8021686Search in Google Scholar PubMed
[35] PimentaM.A., DresselhausG., DresselhausM.S., CançadoL.G., JorioA., SaitoR.: Phys. Chem. Chem. Phys.9 (2007) 1276. 10.1039/b613962kSearch in Google Scholar PubMed
[36] StankovichS., PinerR.D., NguyenS.T., RuoffR.S.: Carbon44 (2006) 3342. 10.1016/j.carbon.2006.06.004Search in Google Scholar
[37] PengX.-Y., LiuX.-X., DiamondD., LauK.T.: Carbon49 (2011) 3488. 10.1016/j.carbon.2011.04.047Search in Google Scholar
[38] LeiZ., ChristovN., ZhaoX.S.: Energy Environ. Sci.4 (2011) 1866. 10.1039/c1ee01094hSearch in Google Scholar
[39] ZhangK., MaoL., ZhangL.L., ChanH.S. On, ZhaoX.S., WuJ.: J. Mater. Chem.21 (2011) 7302. 10.1039/c0jm03031gSearch in Google Scholar
[40] KimK.-M., HurJ.-W., JungS.-I., KangA.-S.: Electrochim. Acta50 (2004) 863. 10.1016/j.electacta.2004.02.059Search in Google Scholar
[41] ChenY., ZhangX., ZhangD., YuP., MaY.: Carbon49 (2011) 573. 10.1016/j.carbon.2010.09.003Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
- Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments
- Sulfur solubility of liquid and solid Fe–Cr alloys: A thermodynamic analysis
- Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
- Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling
- Metallurgical characteristics and machining performance of nanostructured TNN-coated tungsten carbide tool
- Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
- Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
- Influence of fabrication parameters on the nanostructure of Si-NWs under HF/Fe(NO3)3 etching system
- Template assisted synthesis of poly(3-hexylthiophene) nanorods and nanotubes: growth mechanism and corresponding band gap
- Short Communications
- Fabrication and microstructure of nano-SiC/Ni composite coatings on diamond surface via electro-co-deposition
- A comparative study on the friction and wear properties of semi-solid cast A356 alloy
- People
- 10.3139/146.610027
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
- Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments
- Sulfur solubility of liquid and solid Fe–Cr alloys: A thermodynamic analysis
- Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
- Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling
- Metallurgical characteristics and machining performance of nanostructured TNN-coated tungsten carbide tool
- Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
- Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
- Influence of fabrication parameters on the nanostructure of Si-NWs under HF/Fe(NO3)3 etching system
- Template assisted synthesis of poly(3-hexylthiophene) nanorods and nanotubes: growth mechanism and corresponding band gap
- Short Communications
- Fabrication and microstructure of nano-SiC/Ni composite coatings on diamond surface via electro-co-deposition
- A comparative study on the friction and wear properties of semi-solid cast A356 alloy
- People
- 10.3139/146.610027
- DGM News
- DGM News