Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
-
Nenad Milošević
Abstract
This paper presents experimental results on four thermophysical properties of pure polycrystalline ruthenium samples over a wide temperature range. Specific heat capacity and specific electrical resistivity were measured from 250 to 2 500 K, while hemispherical total emissivity and normal spectral emissivity at 900 nm were measured from 1 300 to 2 500 K. All the properties were obtained by using the pulse calorimetry technique. The 200 mm long specimens were in the form of a thin rod, of about 3 mm in diameter. For necessary corrections, literature data on thermal linear expansion were applied. The results are compared with available literature data and discussed. The specific heat capacity and specific electrical resistivity measurements did not indicate any allotropic transformation of the samples over the entire temperature range.
References
[1] HammondC., in: LideD. (Ed.), CRC Handbook of Chemistry and Physics, Section 4 – Properties of the Elements and Inorganic Compounds, CRC Press, Boca Raton, FL, (2005) 4–26.Search in Google Scholar
[2] KenisarinM., BerezinB., GorinaN., KatsS., PolyakovaV., SavitskiiE., ChekhovskoiV.: High Temp.12 (1974) 1159.Search in Google Scholar
[3] BedfordR., BonnierG., MaasH., PaveseF.: Metrologia33 (1996) 133. 10.1088/0026-1394/33/2/3Search in Google Scholar
[4] DouglassR., AdkinsE.: Trans. Met. Soc. AIME221 (1961) 248.Search in Google Scholar
[5] BiceV., JacobsonD., in: AIAA 20th Thermophysics Conference, VA, USA (1985) AIAA 85-0987.Search in Google Scholar
[6] WallR., BaschD., JacobsonD.: J. Mater. Eng. Perform.1 (1992) 679. 10.1007/BF02649249Search in Google Scholar
[7] HolzmannH.: Siebert Festschr. (1931) 147.10.1515/angl.1931.1931.55.57Search in Google Scholar
[8] JaegerF., RosenbohmE.: Proc. Acad. Sci. (Amsterdam)34 (1931) 808.Search in Google Scholar
[9] SheindlinA., KatsS., BerezinB., ChekhovskoyV., KenisarinM.: Rev. Int. Hautes. Temp. Refract.12 (1975) 12.Search in Google Scholar
[10] SavitskiyE., GeldP., ZinovyevV., GorinaN., PolyakovaV.: Dokl. Akad. Nauk SSSR229 (1976) 841.Search in Google Scholar
[11] ChekhovskoiV., RamanauskasG.: Obz. Teplofiz. Svoist. Vesch.4–78 (1989) 3.Search in Google Scholar
[12] CordfunkeE., KoningsR.: Thermochim. Acta139 (1989) 99. 10.1016/0040-6031(89)87013-3Search in Google Scholar
[13] JaegerF., RosenbohmE.: Proc. Acad. Sci. (Amsterdam)44 (1941) 144.Search in Google Scholar
[14] JustiE.: Z. Naturforsch.4A (1949) 472.Search in Google Scholar
[15] RudnitskiiA., PolyakovaR.: Zhur. Neorg. Khim.2 (1957) 2758.Search in Google Scholar
[16] PowelR., TyeR., WoodmanM.: Platinum Metals Rev.6 (1962) 138.Search in Google Scholar
[17] BinkeleL., BrunenM.: Thermal Conductivity, Electrical Resistivity and Lorentz Function Data for Metallic Elements in the Range 273 to 1500 K, Report Jül-3006, Forschungszentrum Jülich GmbH (1994) 121.Search in Google Scholar
[18] TouloukianY., BuycoE.: Thermophysical Properties of Matter, Vol. 4: Specific Heat, Metallic Elements and Alloys, IFI/Plenum Press, New York (1970) 28a.Search in Google Scholar
[19] RoukhlyadaN., SamoilovS.: Phys. Scr.62 (2000) 341. 10.1238/Physica.Regular.062a00341Search in Google Scholar
[20] Emel'yanovV., MaslennikovO., RoukhlyadaP.: Appl. Surf. Sci.215 (2003) 96. 10.1016/S0169-4332(03)00312-XSearch in Google Scholar
[21] RoukhlyadaN.: Phys. Scr.81 (2010) 045701. 10.1088/0031-8949/81/04/045701Search in Google Scholar
[22] HallE., CrangleJ.: Acta Cryst.10 (1957) 240. 10.1107/S0365110X57000730Search in Google Scholar
[23] RhysD.: J. Less-Common Met.1 (1959) 269. 10.1016/0022-5088(59)90004-9Search in Google Scholar
[24] RossR., Hume-RotheryW.: J. Less-Common Met.5 (1963) 258. 10.1016/0022-5088(63)90031-6Search in Google Scholar
[25] SchröderR., Schmitz-PrangheN., KohlhaasR.: Z. Metallkunde63 (1972) 12.Search in Google Scholar
[26] MiloševićN.: Int. J. Mater. Res.105 (2014) 571. 10.3139/146.111074Search in Google Scholar
[27] MiloševićN., BabićM.: Int. J. Mater. Res.104 (2013) 462. 10.3139/146.110889Search in Google Scholar
[28] CezairliyanA., in: MaglićK., CezairliyanA., PeletskyV. (Eds.), Compendium of Thermophysical Property Measurement Methods, Vol. 2 – Recommended Measurement Techniques and Practices, Plenum Press, New York, (1992) 483.Search in Google Scholar
[29] DobrosavljevićA., MaglićK.: High Temp.High Press. 21 (1989) 411.Search in Google Scholar
[30] TouloukianY., KirbyY., TaylorR., DesaiP.: Thermophysical Properties of Matter, Vol. 12: Thermal expansion-metallic elements and alloys, IFI/Plenum Press, New York (1975) 290.Search in Google Scholar
[31] MiloševićN., MaglićK.: Int. J. Thermophys.27 (2006) 530. 10.1007/s10765-006-0045-2Search in Google Scholar
[32] MiloševićN., MaglićK.: Int. J. Thermophys.27 (2006) 1140. 10.1007/s10765-006-0045-2Search in Google Scholar
[33] MiloševićN., MaglićK.: High Temp. High Press. 37 (2008) 187.Search in Google Scholar
[34] ClusiusV., PiesbergenU.: Z. Naturforschg.14a (1959) 23.Search in Google Scholar
[35] FurukawaG., ReillyM., GallagherJ.: J. Phys. Chem. Ref. Data3 (1974) 163. 10.1063/1.3253137Search in Google Scholar
[36] ParadisP.-F., IshikawaT., YodaS.: J. Mater. Res.19 (2004) 590. 10.1557/jmr.2004.19.2.590Search in Google Scholar
[37] ArblasterJ.: Calphad19 (1995) 339. 10.1016/0364-5916(95)00030-ISearch in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
- Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments
- Sulfur solubility of liquid and solid Fe–Cr alloys: A thermodynamic analysis
- Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
- Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling
- Metallurgical characteristics and machining performance of nanostructured TNN-coated tungsten carbide tool
- Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
- Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
- Influence of fabrication parameters on the nanostructure of Si-NWs under HF/Fe(NO3)3 etching system
- Template assisted synthesis of poly(3-hexylthiophene) nanorods and nanotubes: growth mechanism and corresponding band gap
- Short Communications
- Fabrication and microstructure of nano-SiC/Ni composite coatings on diamond surface via electro-co-deposition
- A comparative study on the friction and wear properties of semi-solid cast A356 alloy
- People
- 10.3139/146.610027
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
- Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments
- Sulfur solubility of liquid and solid Fe–Cr alloys: A thermodynamic analysis
- Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
- Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling
- Metallurgical characteristics and machining performance of nanostructured TNN-coated tungsten carbide tool
- Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
- Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
- Influence of fabrication parameters on the nanostructure of Si-NWs under HF/Fe(NO3)3 etching system
- Template assisted synthesis of poly(3-hexylthiophene) nanorods and nanotubes: growth mechanism and corresponding band gap
- Short Communications
- Fabrication and microstructure of nano-SiC/Ni composite coatings on diamond surface via electro-co-deposition
- A comparative study on the friction and wear properties of semi-solid cast A356 alloy
- People
- 10.3139/146.610027
- DGM News
- DGM News