Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
-
Ramona Rynko
, Axel Marquardt , Alexander Paulsen , Jan Frenzel , Christoph Somsen and Gunther Eggeler
Abstract
Alloys based on the titanium–tantalum system are considered for application as high-temperature shape memory alloys due to their martensite start temperatures, which can surpass 200 °C. In the present work we study the evolution of microstructure and the influence of creep on the phase transformation behavior of a Ti70Ta30 (at.%) high-temperature shape memory alloy. Creep tests were performed in a temperature range from 470 to 530 °C at stresses between 90 and 150 MPa. The activation energy for creep was found to be 307 kJ mol−1 and the stress exponent n was determined as 3.7. Scanning and transmission electron microscopy investigations were carried out to characterize the microstructure before and after creep. It was found that the microstructural evolution during creep suppresses subsequent martensitic phase transformations.
References
[1] DuerigT., PeltonA., StöckelD.: Mater. Sci. Eng., A-struct.273–275 (1999) 149–160. 10.1016/S0921-5093(99)00294-4Search in Google Scholar
[2] SachdevaR.C.L., MiyazakiS., in: BuschowK.H.J., CahnR.W., FlemingsM.C., IlschnerB., KramerE.J., MahajanS., VeyssièreP. (Eds.), Encyclopedia of Materials: Science and Technology, 2nd Ed., Elsevier, Oxford (2001) 6155–6160. 10.1016/B0-08-043152-6/01093-7Search in Google Scholar
[3] LagoudasD.C.: Shape Memory Alloys: Modeling and Engineering Applications, SpringerUS, Boston (2008). 10.1007/978-0-387-47685-8Search in Google Scholar
[4] OtsukaK., WaymanC.M., in: OtsukaK., WaymanC.M. (Eds.), Shape Memory Materials, Cambridge University Press, United Kingdom, Cambridge (1999) 1–26.Search in Google Scholar
[5] SutouY., KoedaN., OmoriT., KainumaR., IshidaK.: Acta Mater.57 (2009) 5748–5758. 10.1016/j.actamat.2009.08.003Search in Google Scholar
[6] OtsukaK., RenX.: Prog. Mater. Sci.50 (2005) 511–678. 10.1016/j.pmatsci.2004.10.001Search in Google Scholar
[7] NoebeR., BilesT., S.A.PadulaII, in: SoboyejoW.O., SrivatsanT.S. (Eds.), Advanced Structural Materials: Properties, Design Optimization, and Applications, CRC Press (2006) 145–186. 10.1201/9781420017465.ch7Search in Google Scholar
[8] FrenzelJ., GeorgeE.P., DlouhyA., SomsenC., WagnerM.F.X., EggelerG.: Acta Mater.58 (2010) 3444–3458. 10.1016/j.actamat.2010.02.019Search in Google Scholar
[9] FirstovG.S., Van HumbeeckJ., KovalY.N.: Mater. Sci. Eng., A-struct.378 (2004) 2–10. 10.1016/j.msea.2003.10.324Search in Google Scholar
[10] MaJ., KaramanI., NoebeR.D.: Int. Mater. Rev.55 (2010) 257–315. 10.1179/095066010x12646898728363Search in Google Scholar
[11] BuenconsejoP.J.S.: University of Tsukuba, Japan (2009).Search in Google Scholar
[12] BywaterK.A., ChristianJ.W.: Philos. Mag.25 (1972) 1249–1273. 10.1080/14786437208223852Search in Google Scholar
[13] MurrayJ.L.: Bulletin of Alloy Phase Diagrams2 (1), (1981) 62–66. 10.1007/BF02873703Search in Google Scholar
[14] BuenconsejoP.J.S., KimH.Y., MiyazakiS.: Acta Mater.57 (2009) 2509–2515. 10.1016/j.actamat.2009.02.007Search in Google Scholar
[15] BuenconsejoP.J.S., KimH.Y., HosodaH., MiyazakiS.: Acta Mater.57 (2009) 1068–1077. 10.1016/j.actamat.2008.10.041Search in Google Scholar
[16] FirstovG.S., Van HumbeeckJ., KovalY.N.: Scr. Mater.50 (2004) 243–248. 10.1016/j.scriptamat.2003.09.010Search in Google Scholar
[17] BuenconsejoP.J.S., KimH.Y., MiyazakiS.: Scr. Mater.64 (2011) 1114–1117. 10.1016/j.scriptamat.2011.03.004Search in Google Scholar
[18] IkedaM., KomatsuS., NakamuraY.: Mater. Trans.43 (2002) 2984–2990. 10.2320/matertrans.43.1577Search in Google Scholar
[19] ZhangJ., RynkoR., FrenzelJ., SomsenC., EggelerG.: Int. J. Mater. Res.104 (2014) 156–167. 10.3139/146.111010Search in Google Scholar
[20] KolbeM., MurkenJ., PistolekD., EggelerG., KlamH.J.: Mat.-wiss.u.Werkstofftech.30 (1999) 465–472. 10.1002/(SICI)1521-4052(199908)30:8<465::AID-MAWE465>3.0.CO;2-LSearch in Google Scholar
[21] MälzerG.: Ruhr-Universität Bochum (2006).Search in Google Scholar
[22] PeterD., OttoF., DepkaT., NörtershäuserP., EggelerG.: Mat.-wiss.u.Werkstofftech.42 (2011) 493–499. 10.1002/mawe.201100682Search in Google Scholar
[23] ReimerL.: Scanning Electron Microscopy, Springer, Berlin (1998). 10.1007/978-3-540-38967-5Search in Google Scholar
[24] JácomeL. Agudo, EggelerG., DlouhýA.: Ultramicroscopy122 (2012) 48–59. 10.1016/j.ultramic.2012.06.017Search in Google Scholar
[25] EggelerG.: Acta Metall. Mater.39 (1991) 221–231. 10.1016/0956-7151(91)90270-BSearch in Google Scholar
[26] ČadekJ.: Creep in metallic materials, Elsevier, Amsterdam, Oxford, New York, Tokyo (1988).Search in Google Scholar
[27] CahoonJ.R., SherbyO.D.: Metall. Trans. A23 (1992) 2491–2500. 10.1007/BF02658053Search in Google Scholar
[28] MurrayJ.L., in: MassalskiT.B., OkamotoH., SubramanianP.R., KacprzakL. (Eds.), Binary Alloy Phase Diagrams, 2nd Ed., ASM International, Materials Park (OH) (1990).Search in Google Scholar
[29] OppenheimerS., YungA., DunandD.: Scr. Mater.57 (2007) 377–380. 10.1016/j.scriptamat.2007.05.004Search in Google Scholar
[30] Khalil-AllafiJ., DlouhyA., EggelerG.: Acta Mater.50 (2002) 4255–4274. 10.1016/S1359-6454(02)00257-4Search in Google Scholar
[31] MichuttaJ., SomsenC., YawnyA., DlouhyA., EggelerG.: Acta Mater.54 (2006) 3525–3542. 10.1016/j.actamat.2006.03.036Search in Google Scholar
[32] EggelerG., NeukingK., DlouhyA., KobusE.: Mater. Sci. Forum (2000) 183–186. 10.4028/www.scientific.net/MSF.327-328.183Search in Google Scholar
[33] KobusE., NeukingK., EggelerG., WittkampI.: Prakt. Metallogr.39 (2002) 177–186.10.1515/pm-2002-390402Search in Google Scholar
[34] RaubC.J., ZwickerU.: Phys. Rev.137 (1965) A142–A143. 10.1103/PhysRev.137.A142Search in Google Scholar
[35] KostkaA., TakK.G., HellmigR.J., EstrinY., EggelerG.: Acta Mater.55 (2007) 539–550. 10.1016/j.actamat.2006.08.046Search in Google Scholar
[36] KarlssonN.: J. Inst. Met.79 (1951) 391–405.Search in Google Scholar
[37] WilliamsD.B., CarterC.B.: Transmission Electron Microscopy, Diffraction II, Springer, New York (1996). 10.1007/978-1-4757-2519-3Search in Google Scholar
[38] BanumathyS., MandalR.K., SinghA.K.: J. Appl. Phys.106 (2009) 093518. 10.1063/1.3255966Search in Google Scholar
[39] WilliamsD.B., CarterC.B.: Transmission Electron Microscopy, Imaging III, Springer, New York (1996). 10.1007/978-1-4757-2519-3Search in Google Scholar
[40] ParsaA.B., WollgrammP., BuckH., SomsenC., KostkaA., PovstugarI., ChoiP.-P., RaabeD., DlouhyA., MüllerJ., SpieckerE., DemtroderK., SchreuerJ., NeukingK., EggelerG.: Adv. Eng. Mater. (2014). 10.1002/adem.201400136Search in Google Scholar
[41] UnderwoodE.E.: Quantitative Stereology, Addison-Wesley Pub. Co. (1970).Search in Google Scholar
[42] CaoS., SomsenC., CroitoruM., SchryversD., EggelerG.: Scr. Mater.62 (2010) 399–402. 10.1016/j.scriptamat.2009.11.040Search in Google Scholar
[43] CaoS., NishidaM., SchryversD.: Acta Mater.59 (2011) 1780–1789. 10.1016/j.actamat.2010.11.044Search in Google Scholar
[44] CaoS., KeC.B., ZhangX.P., SchryversD.: J. Alloys Compd.577, Suppl. 1 (2013) S215–S218. 10.1016/j.jallcom.2012.02.013Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
- Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments
- Sulfur solubility of liquid and solid Fe–Cr alloys: A thermodynamic analysis
- Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
- Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling
- Metallurgical characteristics and machining performance of nanostructured TNN-coated tungsten carbide tool
- Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
- Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
- Influence of fabrication parameters on the nanostructure of Si-NWs under HF/Fe(NO3)3 etching system
- Template assisted synthesis of poly(3-hexylthiophene) nanorods and nanotubes: growth mechanism and corresponding band gap
- Short Communications
- Fabrication and microstructure of nano-SiC/Ni composite coatings on diamond surface via electro-co-deposition
- A comparative study on the friction and wear properties of semi-solid cast A356 alloy
- People
- 10.3139/146.610027
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructural evolution in a Ti – Ta high-temperature shape memory alloy during creep
- Microstructural changes in quasicrystalline Al–Mn–Be–Cu alloy after various heat treatments
- Sulfur solubility of liquid and solid Fe–Cr alloys: A thermodynamic analysis
- Thermophysical properties of solid phase ruthenium measured by the pulse calorimetry technique over a wide temperature range
- Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling
- Metallurgical characteristics and machining performance of nanostructured TNN-coated tungsten carbide tool
- Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
- Electrocapacitance of hybrid film based on graphene oxide reduced by ascorbic acid
- Influence of fabrication parameters on the nanostructure of Si-NWs under HF/Fe(NO3)3 etching system
- Template assisted synthesis of poly(3-hexylthiophene) nanorods and nanotubes: growth mechanism and corresponding band gap
- Short Communications
- Fabrication and microstructure of nano-SiC/Ni composite coatings on diamond surface via electro-co-deposition
- A comparative study on the friction and wear properties of semi-solid cast A356 alloy
- People
- 10.3139/146.610027
- DGM News
- DGM News