Home Technology Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
Article
Licensed
Unlicensed Requires Authentication

Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel

  • Ion Mitelea , Cristian Ghera , Ilare Bordeaşu and Corneliu M. Crăciunescu
Published/Copyright: April 23, 2015
Become an author with De Gruyter Brill

Abstract

Ultrasonic cavitation experiments using a piezoceramic-based apparatus, according to ASTM G32-2010, were performed on heat and thermochemically treated Cr – Mn low alloyed steel samples. The microstructure in annealed, carburized and tempered states as well as following a duplex treatment (carburized, surface induction hardening and tempering) was analyzed before and after the cavitation erosion tests. The results show the advantage of the duplex treatment, with a significant increase of up to 20 times of the cavitation erosion resistance compared to the annealed state and reveal that the main mechanism for surface deterioration is micro-cracking. The observations are important for the improvement of the behaviour for parts used in hydraulic equipment, for which the volume hardening following the carburization can be replaced by cost-efficient surface induction hardening treatments.


* Correspondence address, Prof. Dr. Ing. habil. Corneliu M. Craciunescu, Department of Materials and Manufacturing Engineering, Faculty of Mechanical Engineering, Politehnica University Timisoara, Bd. Mihai Viteazul 1, 300006 Timisoara, Romania, Tel.: +40-256-403655, Fax: +40-256-403523, E-mail:

References

[1] EspitiaA.L., ToroA.: Tribol. Int.43 (2010) 2037. 10.1016/j.triboint.2010.05.009Search in Google Scholar

[2] HanssonI., MørchK.A.: J. Appl. Phys.51 (1980) 4651. 10.1063/1.328335Search in Google Scholar

[3] LuoJ., LiJ., in: LuoJ., MengY., ShaoT., ZhaoQ. (Eds.), Advanced Tribology, Springer-Verlag (2010) 638. 10.1007/978-3-642-03653-8Search in Google Scholar

[4] AgarwalN., ChaudhariG.P., NathS.K.: Tribol. Int.70 (2014) 18. 10.1016/j.triboint.2013.09.017Search in Google Scholar

[5] KrellaA.: Wear270 (2011) 252. 10.1016/j.wear.2010.10.065Search in Google Scholar

[6] Wei-DiC., Xiao-PingL.: Metall. Trans. A.20A (1989) 1687.10.1007/BF02825606Search in Google Scholar

[7] HosmaniS.S., AjeshV.: Proceedings of Indian National Science Academy (PINSA). 79/3 (2013) 327.Search in Google Scholar

[8] QiangY.H., GeS.R., XueQ.J.: Tribol. Int.32. (1999) 131. 10.1016/S0301-679X(99)00024-9Search in Google Scholar

[9] GrumbtG., ZenkerR., SpiesH.J., FrankeR., HaaseI.: Mater. Eng. – Materiálové inžinierstvo (MEMI)21 (2014) 1.Search in Google Scholar

[10] da SilvaF.J., MarinhoR.R., PaesM.T.P., FrancoS.D.: Wear304 (2013) 183. 10.1016/j.wear.2013.04.025Search in Google Scholar

[11] KwokT.C.: Surf. Coat. Technol.126 (2000) 238. 10.1016/S0257-8972(00)00533-8Search in Google Scholar

[12] MiteleaI., DimianE., BordeaşuI., CrăciunescuC.: Ultrason. Sonochem.21 (2014) 1544. 10.1016/j.ultsonch.2014.01.005Search in Google Scholar PubMed

[13] JonesK.T., NewsomeM.R., CarterM.D.: Gear solutions8/82 (2010) 38.Search in Google Scholar

[14] OoiS., BhadeshiaH.K.D.H.: ISIJ International52 (2012) 1927. 10.2355/isijinternational.52.1927Search in Google Scholar

[15] GloecknerP., EbertF.J.: Tribol. Trans.53 (2010) 369. 10.1080/10402000903312364Search in Google Scholar

[16] SacherG., ZenkerR., SpiesH.-J.: Mater. Manuf. Process.24 (2009) 800. 10.1080/10426910902841035Search in Google Scholar

[17] DenisS., ArchambaultP., GautierE., SimonA., BeckG.: J. Mat. Eng. Perform.11 (2002) 92. 10.1007/s11665-002-0014-2Search in Google Scholar

Received: 2014-07-16
Accepted: 2014-11-21
Published Online: 2015-04-23
Published in Print: 2015-04-14

© 2015, Carl Hanser Verlag, München

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111188/pdf
Scroll to top button