Home Effect of rate of deformation on electromagnetic radiation during quasi-static compression of sintered aluminium preforms
Article
Licensed
Unlicensed Requires Authentication

Effect of rate of deformation on electromagnetic radiation during quasi-static compression of sintered aluminium preforms

  • Sujeet Kumar Mishra , Vinay Sharma and Ashok Misra
Published/Copyright: March 8, 2014
Become an author with De Gruyter Brill

Abstract

This paper presents some experimental results on the intermittent electromagnetic radiation (EMR) characteristics of sintered aluminium powder preforms under quasi-static compression. The stress level within the gross elastic limit and yielding of the partially compact preforms at which first EMR emission is observed, bears a distinct parabolic relation with the rate of compressive deformation. These observations can be developed into a new technique to detect the compactness of sintered metal powder preforms for industrial components. Further, each successive intermittent EMR emission at all rates of deformation requires increasing incremental strain energy during progressive plastic deformation. The electromagnetic energy release rate decreases sharply as the rate of deformation is increased and then attains a more or less constant value at higher rates of deformation. These results appear significant in understanding the mechanism of plastic deformation in metal powder preforms at the microscopic level, not yet reported in the literature.


* Correspondence address, Sujeet Kumar Mishra, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India, Tel.: +91-9431927250, Fax: +91-06512275401, E-mail:

References

[1] V.S.Chauhan, A.Misra: Int. J. Mat. Res. (formerly Z. Metallkd.)101 (2010) 7. 10.3139/146.110355Search in Google Scholar

[2] A.Misra: Indian J. Pure and Appl. Phys.11 (1973) 419.Search in Google Scholar

[3] A.Misra: Nature254 (1975) 133. 10.1038/254133a0Search in Google Scholar

[4] A.Misra: cited in “Ninth Yearbook to the Encyclopedia of Science and Technology”, Edizioni Scientific E Techniche, Mondadori, Italy1975.Search in Google Scholar

[5] A.Misra: Phys. Lett.62A (1977) 234.10.1016/0375-9601(77)90781-2Search in Google Scholar

[6] A.Misra: Appl. Phys.16 (1978) 195. 10.1007/BF00930387Search in Google Scholar

[7] A.Misra: J. Sci. Ind. Res.40 (1981) 22.10.2307/20554813Search in Google Scholar

[8] A.Misra, S.Ghosh: Indian J. Pure Appl. Phys.18 (1980) 851.Search in Google Scholar

[9] A.Misra, S.Ghosh: Appl. Phys.23 (1981) 387. 10.1007/BF00903221Search in Google Scholar

[10] A.Misra, B.G.Varshney: J. Magn. Magn. Mater.89 (1990) 159. 10.1016/0304-8853(90)90720-BSearch in Google Scholar

[11] A.Misra, A.Kumar: Int. J. Fract.127 (2004) 387. 10.1023/B:FRAC.0000037676.32062.cbSearch in Google Scholar

[12] B.Srilakshmi, A.Misra: Electromagnetic Radiation during Crack Propagation in metals – A New trend in the development of Smart materials, Proceedings of International Symposium on Smart Materials and Systems, Chennai, India (2004).Search in Google Scholar

[13] B.Srilakshmi, A.Misra: Mater. Sci. Eng. A404 (2005) 99. 10.1016/j.msea.2005.05.100Search in Google Scholar

[14] B.Srilakshmi, A.Misra: Manuf. Tech. Res. Int. J.1 (2005) 97.Search in Google Scholar

[15] B.Srilakshmi, A.Misra: Development of Smart materials through Electromagnetic Radiation in metal coating, Proceedings of International Symposium on Intelligence based Materials and Manufacturing, Ranchi, India (2005). PMid:16050930Search in Google Scholar

[16] A.Kumar, A.Misra: J. Magn. Magn. Mater.285 (2005) 71. 10.1016/j.jmmm.2004.07.017Search in Google Scholar

[17] R.Kumar, A.Misra: J. Zhejiang Univ. Sci. A7 (11) (2006) 1800. 10.1631/jzus.2006.A1800Search in Google Scholar

[18] R.Kumar, A.Misra: A New Approach for Smart Sensors in Design against Metallic Failure, International Conference on Resource Utilization and Intelligent System, (2006).Search in Google Scholar

[19] R.Kumar, A.Misra: Mater. Sci. Eng. A454–455 (2007) 203. 10.1016/j.msea.2006.11.011Search in Google Scholar

[20] V.S.Chauhan, A.Misra: J. Mater. Sci.43 (2008) 5634. 10.1007/s10853-008-2590-5Search in Google Scholar

[21] V.S.Chauhan, A.Misra: Int J. Micro. Mech. Prep.6 (2011) 486.Search in Google Scholar

[22] A.A.Tudik, N.P.Valuev: Sov. Tech. Phys. Lett.6 (1980) 37.Search in Google Scholar

[23] V.P.Dmitriev, V.A.Smirnov, A.A.Vorob'ev, Yu.P.Malyshkov, V.F.Gordeev: Stek. Keram.10 (1982) 10.Search in Google Scholar

[24] Yu.K.Bivin, V.V.Viktorov, Yu.V.Kulinich, A.S.Chursin: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela1 (1982) 183.Search in Google Scholar

[25] O.G.Alekseev, S.G.Lazarev, D.G.Priemskii: Prikl. Mekh. Tekh. Fiz.4 (1984) 145.Search in Google Scholar

[26] Yu.P.Malyshkov, V.F.Gordeev, V.P.Dmitriev et al.: Zh. Tekhn. Fiz.54 (2) (1984) 336.Search in Google Scholar

[27] Ya.I.Burak, V.F.Kondrat, V.F.Chekurin, in: Abstr. of the All-Union Sci-Eng. Cong. on Engineering Diagnostics [in Russian], Dnepropetrovsk (1985) 85.Search in Google Scholar

[28] V.F.Zhuravlev: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela6 (1985) 101.Search in Google Scholar

[29] J.T.Dickinson, L.C.Jenson, S.K.Bhattacharya: J. Vac. Sci. Technol.3 (1985) 1398. 10.1116/1.572788Search in Google Scholar

[30] V.Jagasivamani: Some studies on the electromagnetic and acoustic emissions associated with deformation and fracture of metallic materials, Ph.D. Dissertation, I.I.T. Madras, India (1987).Search in Google Scholar

[31] V.Jagasivamani, K.J.Iyer: Mater. Lett.6 (1988) 418. 10.1016/0167-577X(88)90043-2Search in Google Scholar

[32] D.V.Alekseev, P.V.Egorov: Fiz.-Tekh. Probl. Razrab. Polezn. Iskop.6 (1993) 3.Search in Google Scholar

[33] B.Venkataraman, B.Raj, C.K.Mukhopadhyay: J. Korean Soc. Nondestructive Testing22 (2002) 609.Search in Google Scholar

[34] Ya.I.Burak, V.F.Kondrat, O.R.Hrytsyna: Mater. Sci.43 (4) (2007) 449. 10.1007/s11003-007-0054-8Search in Google Scholar

[35] S.Muthukumaran, P.Kumar, V.K.Pandey, S.K.Mukherjee: Int. J. Adv. Manuf. Technol.36 (2008) 249. 10.1007/s00170-006-0840-8Search in Google Scholar

[36] D.Lihong, XuBinshi, D.Shiyun, C.Qunzhi, W.Dan: NDT&E Int.41 (2008) 184. 10.1016/j.ndteint.2007.10.003Search in Google Scholar

[37] M.I.Molotskii: Sov. Tech. Phys. Lett.6 (1980) 22.Search in Google Scholar

[38] W.Brown, M.Schmidt, P.Dzwilewski, T.Samaras: Electromagnetic Emissions in Case of Detonation of Metal Encased Explosives. Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore, MD (2005).Search in Google Scholar

[39] W.Brown, M.Schmidt, K.Calahan: Electromagnetic Radiation From The High Strain Rate Fracture Of Mild Carbon-Steel, Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore, MD (2005).Search in Google Scholar

[40] B.Srilakshmi, A.Misra: J. Mater. Sci.40 (2005) 6079. 10.1007/s10853-005-1293-4Search in Google Scholar

[41] A.Misra, R.C.Prasad, V.S.Chauhan, B.Srilakshmi: Int. J. Fracture145 (2007) 99. 10.1007/s10704-007-9107-0Search in Google Scholar

[42] A.Misra, R.C.Prasad, V.S.Chauhan, R.Kumar: Mech. Mat.42 (2010) 505. 10.1016/j.mechmat.2010.01.005Search in Google Scholar

[43] G.E.Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., London (1998) 295.Search in Google Scholar

[44] R.J.Green: Int. J. Mech. Sci.14 (1972) 215. 10.1016/0020-7403(72)90063-XSearch in Google Scholar

[45] J.J.Park: Int. J. Mech. Sci.37 (7) (1995) 709. 10.1016/0020-403(94)00101-0Search in Google Scholar

[46] L.Hua, X.Qin, H.Mao, Y.Zhao: J. Mat. Proc. Technol.180 (2006) 174. 10.1016/j.jmatprotec.2006.06.001Search in Google Scholar

Received: 2013-07-14
Accepted: 2013-09-02
Published Online: 2014-03-08
Published in Print: 2014-03-11

© 2014, Carl Hanser Verlag, München

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111014/html?lang=en
Scroll to top button