Home Microstructures and corrosion resistance of three typical superlight Mg–Li alloys
Article
Licensed
Unlicensed Requires Authentication

Microstructures and corrosion resistance of three typical superlight Mg–Li alloys

  • Zhikun Qu , Ruizhi Wu , Jinghuai Zhang and Milin Zhang
Published/Copyright: January 11, 2014
Become an author with De Gruyter Brill

Abstract

Three typical superlight Mg–Li alloys (Mg-5Li-3Al-2Zn, Mg-8Li-3Al-2Zn and Mg-14Li-3Al-2Zn) with the matrixes of alfa(Mg), alfa(Mg) + beta(Li) and beta(Li), respectively, are prepared. The microstructures of the alloys are characterized using optical microscopy and X-ray diffraction. The corrosion resistant properties of the alloys are characterized by means of hydrogen evolution, weight loss and potentiodynamic polarization. The alloys are also oxidized at elevated temperature. The microstructure and corrosion resistant property of the alloys after oxidation are also characterized.


* Correspondence address, Professor Ruizhi Wu, College of Materials Science & Chemical Engineering, Harbin Engineering University, 145 Nantong Str., Harbin, 150001, P. R. China, Tel.: +86-451-82569890, Fax: +86-451-82569890, E-mail:

References

[1] M.A.Leeflang, J.S.Dzwonczyk, J.Zhou, J.Duszczyk: Mater. Sci. Eng. B176 (2011) 1741. 10.1016/j.mseb.2011.08.002Search in Google Scholar

[2] W.R.Zhou, Y.F.Zheng, M.A.Leeflang, J.Zhou: Acta Biomater. 10.1016/j.actbio.2013.01.032.Search in Google Scholar

[3] J.E.Gray, B.Luan: J. Alloys Compd. 336 (2002) 88. 10.1016/S0925-8388(01)01899-0Search in Google Scholar

[4] G.Song, A.Atrens, M.Dargusch: Corr. Sci. 41 (1999) 138.Search in Google Scholar

[5] Y.Song, D.Shan, R.Chen, F.Zhang, E.H.Han: Corr. Sci. 51 (2009) 62. 10.1016/j.corsci.2008.10.001Search in Google Scholar

[6] H.Haferkamp, R.Boehm, U.Holzkamp, C.Jaschik, V.Kaese, M.Niemeyer: Mater. Trans. 42 (2001) 1160. 10.2320/matertrans.42.1160Search in Google Scholar

[7] R.Z.Wu, Z.K.Qu, M.L.Zhang: Rev. Adv. Mater. Sci. 24 (2010) 14.Search in Google Scholar

[8] Y.Yang, X.D.Peng, H.M.Wen, B.L.Zheng, Y.Z.Zhou, W.D.Xie, E.J.Lavernia: Metall. Mater. Trans. A44 (2013) 1101. 10.1007/s11661-012-1373-4Search in Google Scholar

[9] R.Z.Wu, M.L.Zhang: Mater. Sci. Eng. A520 (2009) 36. 10.1016/j.msea.2009.05.008Search in Google Scholar

[10] M.C.Lin, C.Y.Tsai, J.Y.Uan: Corr. Sci. 51 (2009) 2463. 10.1016/j.corsci.2008.10.033Search in Google Scholar

[11] C.H.Zhang, X.M.Huang, M.L.Zhang, L.L.Gao, R.Z.Wu: Mater. Lett. 62 (2008) 2177. 10.1016/j.matlet.2007.04.093Search in Google Scholar

[12] D.X.Cao, L.Wu, G.L.Wang, Y.Z.Lv: J. Power Sources183 (2008) 799. 10.1016/j.jpowsour.2008.06.005Search in Google Scholar

[13] L.L.Gao, C.H.Zhang, M.L.Zhang, X.M.Huang: J. Alloys Compd. 468 (2009) 258. 10.1016/j.jallcom.2007.12.072Search in Google Scholar

[14] L.H.Yang, J.Q.Li, Y.Z.Zheng, W.W.Jiang, M.L.Zhang: J. Alloys Compd. 467 (2009) 562. 10.1016/j.jallcom.2007.12.024Search in Google Scholar

[15] G.Chen, X.D.Peng, P.G.Fan, W.D.Xie, Q.Y.Wei, H.Ma, Y.Yang: Trans. Nonferrous Met. Soc. China21 (2011) 725. 10.1016/S1003-6326(11)60692-4Search in Google Scholar

[16] Y.W.Song, D.Y.Shan, R.S.Chen, E.H.Han: Corr. Eng. Sci. Tech. 46 (2011) 719. 10.1179/147842209X12559428167562Search in Google Scholar

[17] F.Czerwinski: Acta Mater. 50 (2002) 2639. 10.1016/S1359-6454(02)00094-0Search in Google Scholar

[18] J.R.Liu, H.K.Chen, L.Zhao, W.D.Huang: Corr. Sci. 51 (2009) 129. 10.1016/j.corsci.2008.09.036Search in Google Scholar

[19] T.S.Shih, J.B.Liu, P.S.Wei: Mater. Chem. Phys. 104 (2007) 497. 10.1016/j.matchemphys.2007.04.010Search in Google Scholar

[20] L.Zhao, J.R.Liu, H.K.Chen, W.D.Huang: J. Alloys Compd. 480 (2009) 711. 10.1016/j.jallcom.2009.01.130Search in Google Scholar

Received: 2013-03-27
Accepted: 2013-07-17
Published Online: 2014-01-11
Published in Print: 2014-01-09

© 2014, Carl Hanser Verlag, München

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110988/pdf
Scroll to top button