Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling
-
Lotfi Faghi
, Salim Triaa , Fatiha Siahmed and Mohamed Azzaz
Abstract
Fe60Si40 (at.%) alloys were synthesised using a planetary ball mill. X-ray diffraction was used to identify and characterise various phases formed during the milling process. Mössbauer and electromagnetic methods were used to characterise the variations in structure and their influence on the local change of magnetic properties. The shape of hyperfine field distributions used to describe the Mössbauer spectra is discussed. It was found that after 4 h of milling, α-FeSi and Fe3Si starts to form. The coexistence of the α-FeSi phase and Fe3Si was found between 8 and 16 h. After 32 h of milling, the powder was completely transformed into the alloy phase (Fe3Si). The value of the mean particle size of our samples decreases with increasing milling time. It reaches the value of 0.42 μm after 56 h of milling. The crystallite size was reduced to 13 nm after milling. The coercitive field HC decreases with increased milling time.
References
[1] Y.Yoshizawa, S.Oguma, K.Yamauchi: J. Appl. Phys. 64 (1988) 6044. 10.1063/1.342149Search in Google Scholar
[2] Y.Miura, S.Fukuyama, A.Gucsik: J. Mat. Proc. Technol. 851–3 (1999) 188. 10.1016/S0924-0136(98)00289-1Search in Google Scholar
[3] T.R.Chueva, N.P.Dyakonova, V.V.Molokanov, T.A.Sviridova: J. Alloys Compd. 434–435 (2007) 327.Search in Google Scholar
[4] G.Yang, R.Wu, J.Chen, F.Song, Y.Pan: Mater. Chem. Phys. 1062–3 (2007) 236. 10.1016/j.matchemphys.2007.05.040Search in Google Scholar
[5] Y.F.Liang, J.P.Lin, F.Ye, Y.J.Li, Y.L.Wang, G.L.Chen: J. Alloys. Compd. 5041 (2010) 476. 10.1016/j.jallcom.2010.03.075Search in Google Scholar
[6] G.Xie, L.Yuan, P.Wang, B.Zhang, P.Lin, H.Lu: J. Non-Cryst. Solids356 (2010) 83. 10.1016/j.jnoncrysol.2009.10.007Search in Google Scholar
[7] A. GarcíaEscorial, P.Adeva, M.C.Cristina, A.Martín, F.Carmona, F.Cebollada, V.E.Martín, M.Leonato, J.M.González: Mater. Sci. Eng. A134 (1991) 1394. 10.1016/0921-5093(91)90998-3Search in Google Scholar
[8] C.G.Kuhrt, L.Shultz: IEEE Trans. Magn. 29 (1993) 2667. 10.1109/20.280831Search in Google Scholar
[9] C.G.Kuhrt, L.Schultz: J. Appl. Phys. 71 (1992) 1896. 10.1063/1.351177Search in Google Scholar
[10] G.Herzer: IEEE Trans. Magn. 265 (1990) 1397. 10.1109/20.104389Search in Google Scholar
[11] J.S.Benjamin: Metall. Trans. 1 (1970) 2943.10.1007/BF03037835Search in Google Scholar
[12] Z.Bensebaa, B.Bouzabata, A.Otmani, A.Djekoun, A.Kihal, J.M.Greneche: Phys. Proc. 2 (2009) 649. 10.1016/j.phpro.2009.11.006Search in Google Scholar
[13] M.Cherigui, N.E.Fenineche, C.Coddet: Surf. Coat. Technol. 192 (2005) 19. 10.1016/j.surfcoat.2004.02.023Search in Google Scholar
[14] Malvern Instruments Ltd., Mastersizer 2000 - Unified System for Particle Sizing, (2003)Search in Google Scholar
[15] R.S.Ward-Smith, N.Gummery, A.F.Rawle: 4th World Congress on Particle Technology in Sydney, Australia (2002)Search in Google Scholar
[16] X-Pert Plus software - Program for Crystallography and Rietveld Analysis, Philips Analytical (1999)Search in Google Scholar
[17] G.K.Williamson, W.H.Hall: Acta Metall. 1 (1953) 22. 10.1016/0001-6160(53)90006-6Search in Google Scholar
[18] K.Lagarek, D.Rancourt: Recoil Software, University of Ottawa (1998)Search in Google Scholar
[19] N.Stevulova, A.Buchal, P.Petrovic, K.Tkacova, V.Sepelak: J. Magn. Magn. Mater. 203 (1999) 190. 10.1016/S0304-8853(99)00224-3Search in Google Scholar
[20] Z.Bensebaa, B.Bouzabata, A.Otmani: J. Alloys Compd. 4691–2 (2009) 24. 10.1016/j.jallcom.2008.01.151Search in Google Scholar
[21] B.D.Cullity: Elements of X-ray Diffraction, Addison-Wesley (1978) 10.1119/1.1934486Search in Google Scholar
[22] H.J.Fecht: Nanostruct. Mater. 16 (1995) 33. 10.1016/0965-9773(95)00027-5Search in Google Scholar
[23] B.V.Neamtu, O.Isnard, I.Chicinas, V.Pop: J. Alloys Compd. 509 (2011) 3632. 10.1016/j.jallcom.2010.12.126Search in Google Scholar
[24] B.Prabhu, C.Suryanarayana, L.Ana, R.Vaidyanathan: Mater. Sci. Eng. A425 (2006) 192. 10.1016/j.msea.2006.03.066Search in Google Scholar
[25] R.M.Davis, B.McDermont, C.C.Koch: Met. Trans. A19 (1988) 28. 10.1007/BF02647712Search in Google Scholar
[26] A.Guittoum, A.Layadi, A.Bourzami, H.Tafat, N.Souami, S.Boutarfaia, D.Lacour: J. Magn. Magn. Mater. 320 (2008) 1385. 10.1016/j.jmmm.2007.11.021Search in Google Scholar
[27] A.Guittoum, A.Layadi, H.Tafat, A.Bourzami, N.Souami, O.Lenoble: Philos. Mag. 88–7 (2008) 1085.Search in Google Scholar
[28] A.Otmani, B.Bouzabata, A.Djekoun, S.Alleg: Ann. Chim. Sci. Mater. 22 (1997) 201.Search in Google Scholar
[29] E.Japa, K.Kroo: Phys. Stat. Sol. (b)96 (1979) 65. 10.1002/pssb.2220960247Search in Google Scholar
[30] M.Abdellaoui, C.Djega-Mariadassou, E.Gaffet: J. Alloys Compd. 259 (1997) 241. 10.1016/S0925-8388(97)00102-3Search in Google Scholar
[31] R.R.Rodríguez, G.A.Pérez Alcázar, H.Sánchez, J.M.Greneche: Microelectron. J. 39 (2008) 1311. 10.1016/j.mejo.2007.07.114Search in Google Scholar
[32] T.Zhou, J.Zhang, J.Xu, Z.Yu, G.Gu, D.Wang, H.Huang, Y.Du, J.Wang, Y.Jiang: J. Magn. Magn. Mater. 164 (1996) 219. 10.1016/S0304-8853(96)00384-8Search in Google Scholar
[33] S.H.Kim, Y.J.Lee, B.H.Lee, K.H.Lee, K.Narasimhan, Y.Do Kim: J. Alloys Compd. 424 (2006) 204. 10.1016/j.jallcom.2005.10.085Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microwave absorbing materials based on polyaniline composites: a review
- Atomic mobilities in fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena
- Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling
- An investigation of the microstructure and hydrogenation/dehydrogenation properties of ball-milled CeMg12 alloys with Ni powders
- Nanoscratch characterization of indium nitride films
- Role of axial thrust in the formation of microstructure and fracture surface of the weld zone in friction stir welded AA6063 aluminium alloy
- Microstructures and corrosion resistance of three typical superlight Mg–Li alloys
- The effect of magnetron-deposited Al2O3 coating on the corrosion resistance of Ti–Al alloys in a 9 %O2 + 0.2 %HCl + 0.08 %SO2 + N2 atmosphere
- Homogenization of direct chill cast AlSi1MgMn billets
- Effect of rare earth Y addition on two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy
- Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)
- Thermal investigation of alumina-based pastes and refractory mixturesd
- Short Communications
- One-step magnetic modification of non-magnetic solid materials
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microwave absorbing materials based on polyaniline composites: a review
- Atomic mobilities in fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena
- Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling
- An investigation of the microstructure and hydrogenation/dehydrogenation properties of ball-milled CeMg12 alloys with Ni powders
- Nanoscratch characterization of indium nitride films
- Role of axial thrust in the formation of microstructure and fracture surface of the weld zone in friction stir welded AA6063 aluminium alloy
- Microstructures and corrosion resistance of three typical superlight Mg–Li alloys
- The effect of magnetron-deposited Al2O3 coating on the corrosion resistance of Ti–Al alloys in a 9 %O2 + 0.2 %HCl + 0.08 %SO2 + N2 atmosphere
- Homogenization of direct chill cast AlSi1MgMn billets
- Effect of rare earth Y addition on two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy
- Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)
- Thermal investigation of alumina-based pastes and refractory mixturesd
- Short Communications
- One-step magnetic modification of non-magnetic solid materials
- DGM News
- DGM News