Synthesis, structural, optical and thermal analysis of nanostructured ZnO
-
Muniappan Elango
, Shanmugam Ranjith , Chinnasamy Balakumar , Kulam Mohammad Prem Nazeer , Sundararajan Vairam and Malaiyandi Thamilselvan
Abstract
Nanostructured zinc oxide (ZnO) has been synthesized via a one step solution based wet chemical method. Zinc acetate dihydrate (Zn (CH3COO)2 · 2H2O) was used as the precursor and its growth conditions were optimized for the formation of nanostructured ZnO. The powder pattern X-ray diffraction data of synthesized ZnO confirm particles of radius of about 20 nm with wurtzite hexagonal phase and preferential growth along (101) plane. Transmission electron microscopic results support the particle size value obtained through X-ray diffraction study. Clusters of nanostructured ZnO in agglomerated form are observed in scanning electron micrographs. The absorption bands observed at 509 cm−1 and 406 cm−1 in infrared spectra are assigned to ∊M-O of the synthesized compound. The absorption spectrum shows a narrow peak near the band edge in the exciton absorption region at about 371 nm and a blue shift is observed with respect to the bulk exciton absorption, 375 nm. Thermo-gravimetric analysis indicates weight loss corresponding to the formation of ZnO. The mechanism for the growth of nanostructured ZnO in solution has also been discussed.
References
[1] S.Kim, B.Fisher, H. J.Eisner, M.BawendiJ. Am. Chem. Soc.125 (2005) 11466. PMid: 13129327; 10.1021/ja0361749Search in Google Scholar
[2] B.Q.Wang, X.D.Shan, Q.Fu, J.Iqbal, L.Yan, H.G.Fu, D.P.Yu: Physica E41 (2009) 413–417. 10.1016/j.physe.2008.09.001Search in Google Scholar
[3] M.S.Amold, P.H.Avouris, Z.W.Pan, Z.L.Wang: J. Phys. Chem. B107 (2003) 659. 10.1021/jp0271054Search in Google Scholar
[4] Y.F.Gao, M.Nagai: Langmuir22 (2006) 3936. PMid: 16584278; 10.1021/la053042fSearch in Google Scholar
[5] Eric W.Seelig, B.Tang, A.Yamilov, H.Cao, R.P.H.Chan: Mat. Chem. Phys.80/1 (2003) 257.Search in Google Scholar
[6] Z.L.Wang, J.Song: Science312 (2006) 242. PMid: 16614215; 10.1126/science.1124005Search in Google Scholar
[7] D.R.Clarke: J. Am. Ceram. Soc.82 (1999) 485. 10.1111/j.1151-2916.1999.tb01793.xSearch in Google Scholar
[8] M.Singhal, V.Chhabra, P.Kang, D.O.Shah: Mater. Res. Bull.32 (1997) 239. 10.1016/S0025-5408(96)00175-4Search in Google Scholar
[9] D.Mondelaers, G.Vanhoyl, H.Van den Rul, J.D.Haen, M.K.VanBael, J.Mullens, L.C.Van Poucke: Mater. Res. Bull.37 (2002) 901. 10.1016/S0025-5408(02)00727-4Search in Google Scholar
[10] M.S.Tokumoto, S.H.Pulcinelli, C.V.Santilli, V.Briois: J. Phys. Chem. B107 (2003), 568. 10.1021/jp0217381Search in Google Scholar
[11] T.Tsuzuki, P.G.McCormick: Scripta Mater.44 (2001) 1731. 10.1016/S1359-6462(01)00793-XSearch in Google Scholar
[12] S.B.Park, Y.C.Kang: J. Aerosol Sci.28 (1997) (Suppl.) S473.Search in Google Scholar
[13] K.Okuyama, I.W.Lenggoro: Chem. Eng. Sci.58 (2003) 537. 10.1016/S0009-2509(02)00578-XSearch in Google Scholar
[14] F.Rataboul, C.Nayral, M.J.Casanove, A.Maisonnat, B.Chaudret: J. Organomet. Chem.643/644 (2002) 307. 10.1016/S0022-328X(01)01378-XSearch in Google Scholar
[15] T.Sato, T.Tanigaki, H.Suzuki, Y.Saito, O.Kido, Y.Kimura, C.Kaito, A.Takeda, S.Kaneko: J. Cryst. Growth255 (2003) 313. 10.1016/S0022-0248(03)01250-8Search in Google Scholar
[16] R.Viswanathan, G.D.Lilly, W.F.Gale, R.B.Gupta: Ind. Eng. Chem. Res.42 (2003) 5535. 10.1021/ie0302701Search in Google Scholar
[17] Y.W.Koh, M.Lin, C.K.Tan, Y.L.Foo, K.P.Loh: J. Phys. Chem. B108 (2004) 11419. 10.1021/jp049134fSearch in Google Scholar
[18] H.Zhang, D.Yang, Y.Ji, X.Y.Ma, J.Xu, D.L.Que: J. Phys. Chem. B108 (13) (2004) 3955. 10.1021/jp036826fSearch in Google Scholar
[19] B.Liu, H.C.Zeng: J. Am. Chem. Soc.125 (2003) 4430. PMid: 12683807; 10.1021/ja0299452Search in Google Scholar PubMed
[20] W.D.Yu, X.M.Li, X.D.Gao: Cryst. Growth. Des.5 (1) (2005) 151. 10.1021/cg049973rSearch in Google Scholar
[21] X.L.Hu, Y.J.Zhu, S.W.Wang: Mater. Chem. Phys.88 (2004) 421. 10.1016/j.matchemphys.2004.08.010Search in Google Scholar
[22] J.H.Kim, W.C.Choi, H.Y.Kim, Y.Kang, Y.K.Park: Powder Technol.153 (2005) 166. 10.1016/j.powtec.2005.03.004Search in Google Scholar
[23] J.M.Wang, L.Gao: Inorg. Chem. Commun.6 (2003) 877. 10.1016/S1387-7003(03)00134-5Search in Google Scholar
[24] A.Aimable, M.T.Buscaglia, V.Buscaglia, P.Bowen: J. Europ. Ceram. Soc.30 (2010) 591. 10.1016/j.jeurceramsoc.2009.06.010Search in Google Scholar
[25] X.D.Wang, Y.Dig, C.J.Sunmers, Z.L.Wang: J. Phys. Chem. B108 (2004) 8773. 10.1021/jp048482eSearch in Google Scholar
[26] X.Liu, Z.Jin, S.Bu, J.Zhao, K.Yu: Mat. Sci. Eng. B129 (2006) 139. 10.1016/j.mseb.2006.01.003Search in Google Scholar
[27] J.Liu, X.Huang: J. Solid State Chem.179 (2006) 843. 10.1016/j.jssc.2005.12.008Search in Google Scholar
[28] G.S.Wu, T.Xie, X.Y.Yuan, Y.Li, L.Yang, Y.H.Xiao, L.D.Zhang: Solid State Commun.134 (2005) 485. 10.1016/j.ssc.2005.02.015Search in Google Scholar
[29] L.F.Xu, Q.Liao, J.P.Zhan, X.H.Ai, D.S.Xu: J. Phys. Chem. C111 (2007) 4549. 10.1021/jp068485mSearch in Google Scholar
[30] J.Zhang, L.D.Sun, C.S.Liao, C.H.Yang: Chem. Commun.3 (2002) 262. PMid: 12120395; 10.1039/b108863gSearch in Google Scholar PubMed
[31] D.S.Boyle, K.Govender, P.O.Brien: Chem. Commun.80 (2002). PMid: 12120320; 10.1039/b110079nSearch in Google Scholar PubMed
[32] T.Zhang, Y.Zeng, H.T.Fan, L.J.Wang, R.Wang, W.Y.Fu, H.B.Yang: J. Phys. D: Appl. Phys, 42 (2009) 045103. 10.1088/0022-3727/42/4/045103Search in Google Scholar
[33] H.Zhang, D.R.Yang, Y.J.Ji, X.Y.Ma, J.Xu, D.L.Que: J. Phys. Chem. B108 (2004) 3955. 10.1021/jp036826fSearch in Google Scholar
[34] C.Pacholski, A.Komowski, H.Weller: Angew. Chem. Int. Edn.41 (2002) 1188.Search in Google Scholar
[35] C.Noguera: J. Phys.: Condens. Matter.12 (2000) R367. 10.1088/0953-8984/12/31/201Search in Google Scholar
[36] N.Jedrecy, S.Gallini, M.Sauvage-Simkin, R.Pinchaux: Surf. Sci., 460 (2000) 136. 10.1016/S0039-6028(00)00525-2Search in Google Scholar
[37] M.Saito, T.Wagner, G.Richter, M.Rühle: Phys. Rev. B80 (2009) 134110. 10.1103/PhysRevB.80.134110Search in Google Scholar
[38] J.Zhang, L.D.Sim, C.S.Liao, C.H.Yang: Chem. Commun.3 (2000) 262.Search in Google Scholar
[39] B.Meyer, D.Marx: Phys. Rev. B67 (2003) 35403. 10.1103/PhysRevB.67.035403Search in Google Scholar
[40] X.Y.Zhan, J.Y.Dai, H.C.Ong, N.Wang, H.L.Chan, C.L.Choy: Chem. Phys. Lett.393 (2004) 17. 10.1016/j.cplett.2004.06.012Search in Google Scholar
[41] H.Kleinwechter, C.Janzen, H.Knipping, H.Wiggers, P.Roth: J. Mater. Sci.37 (2002) 4349. 10.1023/A:1020656620050Search in Google Scholar
[42] Z.Yang, Q.H.Liu: Physica E40 (2008) 531. 10.1016/j.physe.2007.07.027Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- The thermodynamics of boron extraction from liquid silicon using SiO2–CaO–MgO slag treatment
- Viscosity estimation of semi-solid alloys based on thermal simulation compression tests
- Original Contributions
- Experimental study of phase equilibria in the “SnO”–CaO–SiO2 system in equilibrium with tin metal
- Prediction of the solidification path of Al-4.37Cu-27.02Mg ternary eutectic alloy with a unified microsegregation model coupled with Thermo-Calc
- Evaluation of the effective diffusion coefficient of boron in the Fe2B phase in the presence of chemical stresses
- Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters
- Hot forming of a new steel used in stamping dies and tooling
- Mechanical properties and corrosion behaviour of freestanding, precipitate-free magnesium WE43 thin films
- Sliding wear performance of Fe-, Ni- and Co-based hardfacing alloys for PTA cladding
- The suitability of selected austenitic stainless steels and hastelloy C276 alloys as substrates for thin film deposition using spray pyrolysis
- Synthesis, structural, optical and thermal analysis of nanostructured ZnO
- Electrical conductivity variation of (Bi2Te3)0.25(Sb2Te3)0.75 crystal grown using the zone melting method
- X-ray Absorption Near Edge Structure Studies of Pb1-xMnxTe(In, Ga) Systems
- DGM News
- DGM News
- Grain refining of aluminium alloys and silicon by means of boron-nitride particles
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- The thermodynamics of boron extraction from liquid silicon using SiO2–CaO–MgO slag treatment
- Viscosity estimation of semi-solid alloys based on thermal simulation compression tests
- Original Contributions
- Experimental study of phase equilibria in the “SnO”–CaO–SiO2 system in equilibrium with tin metal
- Prediction of the solidification path of Al-4.37Cu-27.02Mg ternary eutectic alloy with a unified microsegregation model coupled with Thermo-Calc
- Evaluation of the effective diffusion coefficient of boron in the Fe2B phase in the presence of chemical stresses
- Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters
- Hot forming of a new steel used in stamping dies and tooling
- Mechanical properties and corrosion behaviour of freestanding, precipitate-free magnesium WE43 thin films
- Sliding wear performance of Fe-, Ni- and Co-based hardfacing alloys for PTA cladding
- The suitability of selected austenitic stainless steels and hastelloy C276 alloys as substrates for thin film deposition using spray pyrolysis
- Synthesis, structural, optical and thermal analysis of nanostructured ZnO
- Electrical conductivity variation of (Bi2Te3)0.25(Sb2Te3)0.75 crystal grown using the zone melting method
- X-ray Absorption Near Edge Structure Studies of Pb1-xMnxTe(In, Ga) Systems
- DGM News
- DGM News
- Grain refining of aluminium alloys and silicon by means of boron-nitride particles