Electronic mobilities of fluorinated oligoacenes
-
Xue-Hai Ju
and Xin Liao
Abstract
Quantum mechanics calculations were performed on fluorinated oligoacenes, with and without 2-thienyl attached. Reorganization energies between the switch of neutral molecules and anion radicals, and the electron-transfer coupling matrix were obtained. By using the Marcus theory and the Einstein relation, the electron hopping rates and mobilities were predicted for the title compounds. The mobility of 3b2 was predicted to be 3.03 cm2 V–1s–1, which is the largest value among the title compounds. This indicates that the 2-thienyl considerably facilitates electronic mobility for n-type organic semiconductors when attached to oligoacenes at an appropriate position.
References
[1] A.R.Murphy, J.M.J.Fréchet: Chem. Rev.107 (2007) 1066. 17428023 10.1021/cr0501386Search in Google Scholar
[2] L.Fomina, G.Z.Galán, M.Bizarro, J.G.Sánchez, I.P.Zaragoza, R.Salcedo: Mater. Chem. Phys.124 (2010) 257.10.1016/j.matchemphys.2010.06.028Search in Google Scholar
[3] A.W.Hains, Z.Liang, M.A.Woodhouse, B.A.Gregg: Chem. Rev.110 (2010) 6689.20184362 10.1021/cr9002984Search in Google Scholar
[4] L.Leontie, R.Danac, N.Apetroaei, G.I.Rusu: Mater. Chem. Phys.127 (2011) 471.10.1016/j.matchemphys.2011.02.040Search in Google Scholar
[5] S.Taeger, M.Mertig: Int. J. Mat. Res.98 (2007) 742.Search in Google Scholar
[6] Y.G.Wen, Y.Q.Liu: Adv. Mater.22 (2010) 1331. 20437478 10.1002/adma.200901454Search in Google Scholar
[7] Z.Bao, J.A.Rogers, H.E.Katz: J. Mater. Chem.9 (1999) 1895.10.1039/a902652eSearch in Google Scholar
[8] C.D.Dimitrakopoulos, P.R.L.Malenfant: Adv. Mater.14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Search in Google Scholar
[9] J.H.Burroughes, D.D.C.Bradley, A.R.Brown, R.N.Marks, K.Mackay, R.H.Friend, P.L.Burns, A.B.Holmes: Nature347 (1990) 539.10.1038/347539a0Search in Google Scholar
[10] C.J.Brabec, N.S.Sariciftci, J.C.Hummelen: Adv. Funct. Mater.11 (2001) 15.10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-ASearch in Google Scholar
[11] H.E.Katz, Z.Bao: J. Phys. Chem.B104 (2000) 671.10.1021/jp992853nSearch in Google Scholar
[12] H.Usta, A.Facchetti, T.J.Marks: Acc. Chem. Res.44 (2011) 501. 21615105 10.1021/ar200006rSearch in Google Scholar PubMed
[13] A.Datta, S.Mohakud, S.K.Pati: J. Chem. Phys.126 (2007) 144710. 17444735 10.1063/1.2721530Search in Google Scholar PubMed
[14] W.Q.Deng, W.A.Goddard Ш: J. Phys. Chem.B108 (2004) 8614.10.1021/jp0495848Search in Google Scholar
[15] M.Winkler, K.N.Houk: J. Am. Chem. Soc.129 (2007) 1805. 17249669 10.1021/ja067087uSearch in Google Scholar PubMed
[16] S.E.Koh, B.Delley, J.E.Medvedeva, A.Facchetti, A.J.Freeman, T.J.Marks, M.A.Ratner: J. Phys. Chem.B110 (2006) 24361. 1713418810.1021/jp064840xSearch in Google Scholar PubMed
[17] J.J.P.Stewart: J. Comput. Chem.10 (1989) 209.10.1002/jcc.540100208Search in Google Scholar
[18] S.Schröder, V.Daggett, P.Kollman: J. Am. Chem. Soc.113 (1991) 8922.10.1021/ja00023a046Search in Google Scholar
[19] M.J.Frisch, G.W.Trucks, H.B.Schlegel, G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A.Montgomery, Jr., T.Vreven, K.N.Kudin, J.C.Burant, J.M.Millam, S.S.Iyengar, J.Tomasi, V.Barone, B.Mennucci, M.Cossi, G.Scalmani, N.Rega, G.A.Petersson, H.Nakatsuji, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, M.Klene, X.Li, J.E.Knox, H.P.Hratchian, J.B.Cross, C.Adamo, J.Jaramillo, R.Gomperts, R.E.Stratmann, O.Yazyev, A.J.Austin, R.Cammi, C.Pomelli, J.W.Ochterski, P.Y.Ayala, K.Morokuma, G.A.Voth, P.Salvador, J.J.Dannenberg, V.G.Zakrzewski, S.Dapprich, A.D.Daniels, M.C.Strain, O.Farkas, D.K.Malick, A.D.Rabuck, K.Raghavachari, J.B.Foresman, J.V.Ortiz, Q.Cui, A.G.Baboul, S.Clifford, J.Cioslowski, B.B.Stefanov, G.Liu, A.Liashenko, P.Piskorz, I.Komaromi, R.L.Martin, D.J.Fox, T.Keith, M.A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P.M.W.Gill, B.Johnson, W.Chen, M.W.Wong, C.Gonzalez, J.A.Pople: Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh, PA (2003).Search in Google Scholar
[20] Y.Shao, L.Fusti-Molnar, Y.Jung, J.Kussmann, C.Ochsenfeld, S.T.Brown, A.T.B.Gilbert, L.V.Slipchenko, S.V.Levchenko, D.P.O'Neill, R.A.DiStasioJr., R.C.Lochan, T.Wang, G.J.O.Beran, N.A.Besley, J.M.Herbert, C.Y.Lin, T.V.Voorhis, S.H.Chien, A.Sodt, R.P.Steele, V.A.Rassolov, P.E.Maslen, P.P.Korambath, R.D.Adamson, B.Austin, J.Baker, E.F.C.Byrd, H.Dachsel, R.J.Doerksen, A.Dreuw, B.D.Dunietz, A.D.Dutoi, T.R.Furlani, S.R.Gwaltney, A.Heyden, S.Hirata, C.-P.Hsu, G.Kedziora, R.Z.Khalliulin, P.Klunzinger, A.M.Lee, M.S.Lee, W.Liang, I.Lotan, N.Nair, B.Peters, E.I.Proynov, P.A.Pieniazek, Y.M.Rhee, J.Ritchie, E.Rosta, C.D.Sherrill, A.C.Simmonett, J.E.Subotnik, H.L.WoodcockIII, W.Zhang, A.T.Bell, A.K.Chakraborty, D.M.Chipman, F.J.Keil, A.Warshel, W.J.Hehre, H.F.SchaeferIII, J.Kong, A.I.Krylov, P.M.W.Gill, M.Head-Gordon: Q-Chem, Version 3.0, Q-Chem, Inc., Pittsburgh, PA (2006).Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructure and high temperature deformation of an ultra-fine grained ECAP AA7075 aluminium alloy
- Stability of mechanical behavior and work performance in TiNi-based alloys during thermal cycling
- The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties
- Comparative thermodynamic analysis and phase diagram prediction of the Ga – Sn – Zn system
- 450°C isothermal section of the Zn-Fe-Co-Si quaternary system at the zinc-rich corner
- Mixing enthalpies in binary Ce-Sb and ternary Ce-Co-Sb liquid alloys
- Thermodynamic re-assessment of the Ni – Sn system
- Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting
- Microstructure, mechanical and oxidation properties of in-situ synthesized (Y2O3 + TiC)/Ti-4.5Si composites
- Hydrothermal synthesis of MoO3 micro-belts
- Room temperature synthesis of microemulsion mediated rutile TiO2 nanoparticles showing remarkable photocatalytic activity
- Effect of montmorillonite clay content on ac conductivity and impedance of Epoxy-based nanocomposites
- Effect of sintering behavior on the porous structure of porous quartz ceramics
- Structural, elastic, thermodynamic and lattice dynamic properties of PrX (X = Sb, Bi)
- Electronic mobilities of fluorinated oligoacenes
- DGM News
- Fachausschüsse
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Microstructure and high temperature deformation of an ultra-fine grained ECAP AA7075 aluminium alloy
- Stability of mechanical behavior and work performance in TiNi-based alloys during thermal cycling
- The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties
- Comparative thermodynamic analysis and phase diagram prediction of the Ga – Sn – Zn system
- 450°C isothermal section of the Zn-Fe-Co-Si quaternary system at the zinc-rich corner
- Mixing enthalpies in binary Ce-Sb and ternary Ce-Co-Sb liquid alloys
- Thermodynamic re-assessment of the Ni – Sn system
- Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting
- Microstructure, mechanical and oxidation properties of in-situ synthesized (Y2O3 + TiC)/Ti-4.5Si composites
- Hydrothermal synthesis of MoO3 micro-belts
- Room temperature synthesis of microemulsion mediated rutile TiO2 nanoparticles showing remarkable photocatalytic activity
- Effect of montmorillonite clay content on ac conductivity and impedance of Epoxy-based nanocomposites
- Effect of sintering behavior on the porous structure of porous quartz ceramics
- Structural, elastic, thermodynamic and lattice dynamic properties of PrX (X = Sb, Bi)
- Electronic mobilities of fluorinated oligoacenes
- DGM News
- Fachausschüsse