Home Electronic mobilities of fluorinated oligoacenes
Article
Licensed
Unlicensed Requires Authentication

Electronic mobilities of fluorinated oligoacenes

  • Xue-Hai Ju and Xin Liao
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

Quantum mechanics calculations were performed on fluorinated oligoacenes, with and without 2-thienyl attached. Reorganization energies between the switch of neutral molecules and anion radicals, and the electron-transfer coupling matrix were obtained. By using the Marcus theory and the Einstein relation, the electron hopping rates and mobilities were predicted for the title compounds. The mobility of 3b2 was predicted to be 3.03 cm2 V1s1, which is the largest value among the title compounds. This indicates that the 2-thienyl considerably facilitates electronic mobility for n-type organic semiconductors when attached to oligoacenes at an appropriate position.


Correspondence address, Professor Xue-Hai Ju, Key Laboratory of Soft Chemistry and Functional Materials of MOESchool of Chemical EngineeringNanjing University of Science and TechnologyNanjing 210094P.R. China, Tel.: +86 15195767576, Fax: +86 25 84431622, Email:

References

[1] A.R.Murphy, J.M.J.Fréchet: Chem. Rev.107 (2007) 1066. 17428023 10.1021/cr0501386Search in Google Scholar

[2] L.Fomina, G.Z.Galán, M.Bizarro, J.G.Sánchez, I.P.Zaragoza, R.Salcedo: Mater. Chem. Phys.124 (2010) 257.10.1016/j.matchemphys.2010.06.028Search in Google Scholar

[3] A.W.Hains, Z.Liang, M.A.Woodhouse, B.A.Gregg: Chem. Rev.110 (2010) 6689.20184362 10.1021/cr9002984Search in Google Scholar

[4] L.Leontie, R.Danac, N.Apetroaei, G.I.Rusu: Mater. Chem. Phys.127 (2011) 471.10.1016/j.matchemphys.2011.02.040Search in Google Scholar

[5] S.Taeger, M.Mertig: Int. J. Mat. Res.98 (2007) 742.Search in Google Scholar

[6] Y.G.Wen, Y.Q.Liu: Adv. Mater.22 (2010) 1331. 20437478 10.1002/adma.200901454Search in Google Scholar

[7] Z.Bao, J.A.Rogers, H.E.Katz: J. Mater. Chem.9 (1999) 1895.10.1039/a902652eSearch in Google Scholar

[8] C.D.Dimitrakopoulos, P.R.L.Malenfant: Adv. Mater.14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Search in Google Scholar

[9] J.H.Burroughes, D.D.C.Bradley, A.R.Brown, R.N.Marks, K.Mackay, R.H.Friend, P.L.Burns, A.B.Holmes: Nature347 (1990) 539.10.1038/347539a0Search in Google Scholar

[10] C.J.Brabec, N.S.Sariciftci, J.C.Hummelen: Adv. Funct. Mater.11 (2001) 15.10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-ASearch in Google Scholar

[11] H.E.Katz, Z.Bao: J. Phys. Chem.B104 (2000) 671.10.1021/jp992853nSearch in Google Scholar

[12] H.Usta, A.Facchetti, T.J.Marks: Acc. Chem. Res.44 (2011) 501. 21615105 10.1021/ar200006rSearch in Google Scholar PubMed

[13] A.Datta, S.Mohakud, S.K.Pati: J. Chem. Phys.126 (2007) 144710. 17444735 10.1063/1.2721530Search in Google Scholar PubMed

[14] W.Q.Deng, W.A.Goddard Ш: J. Phys. Chem.B108 (2004) 8614.10.1021/jp0495848Search in Google Scholar

[15] M.Winkler, K.N.Houk: J. Am. Chem. Soc.129 (2007) 1805. 17249669 10.1021/ja067087uSearch in Google Scholar PubMed

[16] S.E.Koh, B.Delley, J.E.Medvedeva, A.Facchetti, A.J.Freeman, T.J.Marks, M.A.Ratner: J. Phys. Chem.B110 (2006) 24361. 1713418810.1021/jp064840xSearch in Google Scholar PubMed

[17] J.J.P.Stewart: J. Comput. Chem.10 (1989) 209.10.1002/jcc.540100208Search in Google Scholar

[18] S.Schröder, V.Daggett, P.Kollman: J. Am. Chem. Soc.113 (1991) 8922.10.1021/ja00023a046Search in Google Scholar

[19] M.J.Frisch, G.W.Trucks, H.B.Schlegel, G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A.Montgomery, Jr., T.Vreven, K.N.Kudin, J.C.Burant, J.M.Millam, S.S.Iyengar, J.Tomasi, V.Barone, B.Mennucci, M.Cossi, G.Scalmani, N.Rega, G.A.Petersson, H.Nakatsuji, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, M.Klene, X.Li, J.E.Knox, H.P.Hratchian, J.B.Cross, C.Adamo, J.Jaramillo, R.Gomperts, R.E.Stratmann, O.Yazyev, A.J.Austin, R.Cammi, C.Pomelli, J.W.Ochterski, P.Y.Ayala, K.Morokuma, G.A.Voth, P.Salvador, J.J.Dannenberg, V.G.Zakrzewski, S.Dapprich, A.D.Daniels, M.C.Strain, O.Farkas, D.K.Malick, A.D.Rabuck, K.Raghavachari, J.B.Foresman, J.V.Ortiz, Q.Cui, A.G.Baboul, S.Clifford, J.Cioslowski, B.B.Stefanov, G.Liu, A.Liashenko, P.Piskorz, I.Komaromi, R.L.Martin, D.J.Fox, T.Keith, M.A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P.M.W.Gill, B.Johnson, W.Chen, M.W.Wong, C.Gonzalez, J.A.Pople: Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh, PA (2003).Search in Google Scholar

[20] Y.Shao, L.Fusti-Molnar, Y.Jung, J.Kussmann, C.Ochsenfeld, S.T.Brown, A.T.B.Gilbert, L.V.Slipchenko, S.V.Levchenko, D.P.O'Neill, R.A.DiStasioJr., R.C.Lochan, T.Wang, G.J.O.Beran, N.A.Besley, J.M.Herbert, C.Y.Lin, T.V.Voorhis, S.H.Chien, A.Sodt, R.P.Steele, V.A.Rassolov, P.E.Maslen, P.P.Korambath, R.D.Adamson, B.Austin, J.Baker, E.F.C.Byrd, H.Dachsel, R.J.Doerksen, A.Dreuw, B.D.Dunietz, A.D.Dutoi, T.R.Furlani, S.R.Gwaltney, A.Heyden, S.Hirata, C.-P.Hsu, G.Kedziora, R.Z.Khalliulin, P.Klunzinger, A.M.Lee, M.S.Lee, W.Liang, I.Lotan, N.Nair, B.Peters, E.I.Proynov, P.A.Pieniazek, Y.M.Rhee, J.Ritchie, E.Rosta, C.D.Sherrill, A.C.Simmonett, J.E.Subotnik, H.L.WoodcockIII, W.Zhang, A.T.Bell, A.K.Chakraborty, D.M.Chipman, F.J.Keil, A.Warshel, W.J.Hehre, H.F.SchaeferIII, J.Kong, A.I.Krylov, P.M.W.Gill, M.Head-Gordon: Q-Chem, Version 3.0, Q-Chem, Inc., Pittsburgh, PA (2006).Search in Google Scholar

Received: 2011-9-29
Accepted: 2012-7-4
Published Online: 2013-05-18
Published in Print: 2013-01-01

© 2013, Carl Hanser Verlag, München

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110832/html?lang=en
Scroll to top button