Formation of Al67Cu23Fe10 quasicrystals by microwave heating
-
Carmen Mihoc
, Daniel Schick , Matthias Lütgens , Christian Lathe and Eberhard Burkel
Abstract
The present work was carried out to compare the formation of single icosahedral phase during conventional heating and microwave processing. Al67Cu23Fe10 alloy powder was synthesized from high purity (99.9%) powder elements by mechanical alloying. Differential scanning calorimetry combined with in-situ synchrotron energy dispersive X-ray diffraction was used to identify the main solid state reactions and the phase evolution of the powders. Inductive microwave processing in the magnetic field anti-node was performed to obtain the quasicrystalline phase in only a few seconds. Due to the rapid cooling of the sample it was possible to stabilize the icosahedral phase against its competing quasicrystalline approximants. Laboratory X-ray diffraction analysis was used to characterise the atomic structure of the specimen and scanning electron microscopy was used to characterise the microstructure after the microwave processing.
References
[1] D.Shechtman, I.Blech, D.Gratias, J.W.Cahn: Phys. Rev. Lett.,53 (1984) 1951–1953. 10.1103/PhysRevLett.53.195110.1103/PhysRevLett.53.1951Search in Google Scholar
[2] H.-R.Trebin, (Ed.): Quasicrystals, Wiley-VCH, (2003).10.1002/3527606572Search in Google Scholar
[3] D.J.Sordelet, J.M.Dubois: Quasicrystals, MRS – Mat. Res. Soc. (1997).Search in Google Scholar
[4] E.Huttunen-Saarivirta: J. Alloys Compd.363, (2004), 154–178.10.1016/S0925-8388(03)00445-610.1016/S0925-8388(03)00445-6Search in Google Scholar
[5] R.Nicula, F.Turquier, M.Stir, V.Y.Kodash, J.R.Groza, E.Burkel: J. Alloys Compd.434–435 (2007) 319–323.10.1016/j.jallcom.2006.08.195Search in Google Scholar
[6] K. F.Kelton, Int. Mater. Rev.38 (1993) 105–137.10.1179/09506609379032629410.1179/095066093790326294Search in Google Scholar
[7] J.-K.Jeon, S.-H.Lee, J.-G.Kim, J.-Y.Kim: J. Korean Phys. Soc.53 (2008) 2587–2590. 10.3938/jkps.53.328710.3938/jkps.53.3287Search in Google Scholar
[8] A.I.Zaitsev, N.E.Zaitseva, R.Y.Shimko, N.A.Arutyunyan, S.F.Dunaev, V.S.Kraposhin, H.T.Lam: J. Phys.: Condens. Matter20 (2008) 114121/1–114121/4.10.1088/0953-8984/20/11/114121Search in Google Scholar PubMed
[9] V.Tcherdyntsev, S.D.Kaloshkin, E.V.Shelekhov, E.A.Afonina, A.M.Blinov, Y.V.Baldokhin: J. Metastab. Nanocryst.20–21 (2004) 157.10.4028/www.scientific.net/JMNM.20-21.157Search in Google Scholar
[10] X.Liu, Y.Osawa, S.Takamori, G.Yang: Mater. Lett.61 (2007) 5164. 10.1016/j.matlet.2007.04.02110.1016/j.matlet.2007.04.021Search in Google Scholar
[11] R.Roy, D.Agrawal, J.Cheng, S.Gedevanishvili: Nature399 (1999) 668–670. 10.1038/2139010.1038/21390Search in Google Scholar
[12] Y.V.Bykov, K.I.Rybakov, V.E.Semenov: J. Phys. D: Appl. Phys34 (2001) R55–R75. 10.1088/0022-3727/34/13/20110.1088/0022-3727/34/13/201Search in Google Scholar
[13] E.T.Thostenson, T.W.Chou: Compos. Part A-Appl. Sci. Manuf.30 (1999), 1055–1071. 10.1016/S1359-835X(99)00020-210.1016/S1359-835X(99)00020-2Search in Google Scholar
[14] K.I.Rybakov, V.E.Semenov, S.V.Egorov, A.G.Eremeev, I.V.Plotnikov, Y.V.Bykov: J. Appl. Phys.99 (2006) 023506. 10.1063/1.215907810.1063/1.2159078Search in Google Scholar
[15] J.Ma, J.F.Diehl, E.J.Johnson, K.R.Martin, N.M.Miskovsky, C.T.Smith, G.J.Weisel, B.L.Weiss, D.T.Zimmermann: J. Appl. Phys.101 (2007) 074906. 10.1063/1.271308710.1063/1.2713087Search in Google Scholar
[16] M.Stir, R.Nicula, E.Burkel: J. Eur. Ceram. Soc.,26 (2006) 1547–1553. 10.1016/j.jeurceramsoc.2005.03.26010.1016/j.jeurceramsoc.2005.03.260Search in Google Scholar
[17] D.L.Decker: J. Appl. Phys.,42 (1971) 3239–3244.10.1063/1.166071410.1063/1.1660714Search in Google Scholar
[18] V.Tcherdyntsev, S.Kaloshkin, A.Salimon, E.Leonova, I.Tomilin, J.Eckert, F.Schurack, V.Rogozin, S.Pisarev, Y.Trykov, Mater. Manufact. Proc.17 (2002) 825–841.10.1081/AMP-12001606010.1081/AMP-120016060Search in Google Scholar
[19] C.Ricard, L.Dubois, S.Vaucher, S.Leparoux, J.Camart, J.Pribetich: Microwave Opt. Techn. Let.48 (2006) 2037–2041.10.1002/mop.2185610.1002/mop.21856Search in Google Scholar
[20] A.Nesbitt, P.Navabpour, B.Degamber, C.Nightingale, T.Mann, G.Fernando, R.J.Day: Meas. Sci. Technol., 15, 11 (2004), 2313–2324. 10.1088/0957-0233/15/11/01810.1088/0957-0233/15/11/018Search in Google Scholar
[21] S.Vaucher, R.Nicula, J.M.Catala-Civera, B.Schmitt, B.Patterson: J. Mat. Res.23 (2008) 170–175.10.1557/JMR.2008.000910.1557/JMR.2008.0009Search in Google Scholar
[22] Y.V.Milman: Mater. Sci. Forum482 (2005) 77–82.10.4028/www.scientific.net/MSF.482.77Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2011
- Original Contributions
- Ostwald ripening in Al–Li alloys: A test of theory
- The Mg–C phase equilibria and their thermodynamic basis
- Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
- Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
- Severe tempering of bainite generated at low transformation temperatures
- A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
- Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
- Properties of Si3N4/SiC composites produced via spark plasma sintering
- Formation of Al67Cu23Fe10 quasicrystals by microwave heating
- Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
- On the texture and grain growth in hot-deformed and annealed WE54 alloy
- Numerical study of equal-channel angular pressing based on the element-free Galerkin method
- Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
- Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
- Controlled release of ofloxacin from gelatin blended with cloisite 30B
- Short Communications
- Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
- People
- Horst Vehoff 65 years
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2011
- Original Contributions
- Ostwald ripening in Al–Li alloys: A test of theory
- The Mg–C phase equilibria and their thermodynamic basis
- Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
- Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
- Severe tempering of bainite generated at low transformation temperatures
- A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
- Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
- Properties of Si3N4/SiC composites produced via spark plasma sintering
- Formation of Al67Cu23Fe10 quasicrystals by microwave heating
- Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
- On the texture and grain growth in hot-deformed and annealed WE54 alloy
- Numerical study of equal-channel angular pressing based on the element-free Galerkin method
- Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
- Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
- Controlled release of ofloxacin from gelatin blended with cloisite 30B
- Short Communications
- Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
- People
- Horst Vehoff 65 years
- DGM News
- DGM News