Home On the texture and grain growth in hot-deformed and annealed WE54 alloy
Article
Licensed
Unlicensed Requires Authentication

On the texture and grain growth in hot-deformed and annealed WE54 alloy

  • Hiba Azzeddine and Djamel Bradai
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

A WE54 (Mg–Y–Nd–Zr) magnesium alloy was subjected to uniaxial and plane strain compression at two temperatures (300 and 400°C) and two strain rates (10–4 and 10–2 s–1). This processing resulted in a relative weakening of the initial strong basal texture of the as-received material. Contrarily to the conventional AZ31 alloy, the deformation texture was more or less insensitive to the processing parameters but depended strongly on the hot deformation type. Annealing treatments at 450°C up to 7 days resulted in normal grain growth. The grain growth annealing caused dissolution of the precipitates that had developed during hot deformation at 300°C. The grain growth kinetics can be described by Dn = DRn + kt, where n was found to range between 6 and 11. A net randomization of the texture was evidenced for all the deformation conditions.


Correspondence address Hiba Azzeddine, M.Sc, Faculty of Physics, USTHB, BP32, El-Alia, Bab Ezzouar, 16111 Algiers, Algeria, Tel.: +213 771 35 91 13, Fax: +213 21 24 73 44, E-mail:

References

[1] H.E.Friedrich, B.L.Mordike (Eds.): Magnesium Technology, Springer (2006).Search in Google Scholar

[2] K.U.Kainer, (Ed.), Magnesium alloys and technology, WILEY-VCH Verlag GmbH & Co. KG aA, Weinheim (2003).10.1002/3527602046Search in Google Scholar

[3] H.Somekawa, H.Watanabe, T.Mukai, K.Higashi: Scr. Mater.48 (2003) 1249. 10.1016/S1359-6462(03)00054-X10.1016/S1359-6462(03)00054-XSearch in Google Scholar

[4] H.Watanabe, T.Mukai, K.Ishikawa, K.Higashi: Mater. Trans.43 (2002) 78. 10.2320/matertrans.43.7810.2320/matertrans.43.78Search in Google Scholar

[5] S.Abdessameud, D.Bradai: Can. Metall. Quart.48 (2009) 433.10.1179/000844309794238810Search in Google Scholar

[6] S.Abdessameud, H.Azzeddine, B.Alili, D.Bradai: Trans. Nonferrous Met. Soc. China20 (2010) 2215. 10.1016/S1003-6326(10)60631-010.1016/S1003-6326(10)60631-0Search in Google Scholar

[7] S.R.Agnew, J.A.Horton, T.M.Lillo, D.W.Brown: Scr. Mater.50 (2004) 377. 10.1016/j.scriptamat.2003.10.00610.1016/j.scriptamat.2003.10.006Search in Google Scholar

[8] X.Huang, K.Suzuki, A.Watazu, I.Shigematsu, N.Saito: Mater. Sci. Eng. A48 (2008) 8214.Search in Google Scholar

[9] Y.Chino, K.Sassa, M.Mabuchi: Scr. Mater.59 (2008) 399. 10.1016/j.scriptamat.2008.04.01310.1016/j.scriptamat.2008.04.013Search in Google Scholar

[10] H.Zhang, Q.Yan, L.Li: Mater. Sci. Eng. A486 (2008) 295. 10.1016/j.msea.2007.09.00110.1016/j.msea.2007.09.001Search in Google Scholar

[11] J.Bohlen, M.R.Nurnberg, J.W.Senn, D.Letzig, S.R.Agnew: Acta Mater.55 (2007) 2101. 10.1016/j.actamat.2006.11.01310.1016/j.actamat.2006.11.013Search in Google Scholar

[12] J.Wendt, K.U.Kainer, G.Arruebarrena, K.Hantzsche, J.Bohlen, D.Letzig, in: E.Nyberg, S.Agnew, O.Pekguleyuz (Eds.), Magnesium Technology, TMS (2009).Search in Google Scholar

[13] K.U.Kainer, J.Wendt, K.Hantzsche, J.Bohlen, S.Yi, D.Letzig: Mater. Sci. Forum654–656 (2010) 580. 10.4028/www.scientific.net/MSF.654-656.580Search in Google Scholar

[14] T.Al-Samman, X.Li: Mater. Sci. Eng. A528 (2011) 3809. 10.1016/j.msea.2011.01.08010.1016/j.msea.2011.01.080Search in Google Scholar

[15] L.L.Rokhlin, T.V.Dobatkina, I.F.Tarytina, V.N.Timofeev, E.E.Balakhehi: J. Alloys Compd.367 (2004) 17. 10.1016/j.jallcom.2003.08.00410.1016/j.jallcom.2003.08.004Search in Google Scholar

[16] L.W.F.Mackenzie, F.J.Humphreys, G.W.Lorimer, K.Savage, T.Wilks, in: K.U.Kainer (Ed.), Magnesium Alloys and their Applications, DGM, Germany (2003) 158.Search in Google Scholar

[17] E.A.Ball, P.B.Prangnell: Scr. Metall. Mater.31 (1994) 111. 10.1016/0956-716X(94)90159-710.1016/0956-716X(94)90159-7Search in Google Scholar

[18] T.Al-Samman, G.Gottstein: Scr. Mater.59 (2008) 760. 10.1016/j.scriptamat.2008.06.02310.1016/j.scriptamat.2008.06.023Search in Google Scholar

[19] X.Liu, R.Chen, E.Han: Mater. Sci. Eng. A497 (2008) 326. 10.1016/j.msea.2008.07.02410.1016/j.msea.2008.07.024Search in Google Scholar

[20] M.Dahms, H.J.Bunge: Texture Microstruct.7 (1987) 171. 10.1155/TSM.7.17110.1155/TSM.7.171Search in Google Scholar

[21] T.Rzychoń, A.Kiełbus: J. AMME21 (2007) 31.Search in Google Scholar

[22] S.R.Agnew, M.H.Yoo, C.N.Tomé: Acta Mater.49 (2001) 4277. 10.1016/S1359-6454(01)00297-X10.1016/S1359-6454(01)00297-XSearch in Google Scholar

[23] T.Al-Samman, G.Gottstein: Mater. Sci. Forum539–543 (2007) 3401. 10.4028/www.scientific.net/MSF.539-543.3401Search in Google Scholar

[24] J.W.Senn, S.R.Agnew, in: M.O.Pekguleryuz, L.W.F.Mackenzie (Eds.), Proc. Magnesium Technology in the Global Age, Montreal, Canada (2006) 115.Search in Google Scholar

[25] T.Al-Samman, B.Ahmad, G.Gottstein: Mater. Sci. Forum.550 (2007) 229. 10.4028/www.scientific.net/MSF.550.229Search in Google Scholar

[26] H.Karimzadeh, PhD Thesis, University of Manchester, UK (1998).Search in Google Scholar

[27] C.Antion, P.Donnadieu, F.Perrard, A.Deschamps, C.Tassin, A.Pisch: Acta Mater.51 (2003) 5335. 10.1016/S1359-6454(03)00391-410.1016/S1359-6454(03)00391-4Search in Google Scholar

[28] Y.B.Chun, J.Geng, N.Stanford, C.H.J.Davies, J.F.Nie, M.R.Barnett: Mater. Sci. Eng. A528 (2011) 3659. 10.1016/j.msea.2011.01.02410.1016/j.msea.2011.01.024Search in Google Scholar

[29] E.Hornbogen, U.Köster: Recrystallization of Metallic Materials, Stuttgart, Dr. Rieder Verlag (1978) 159.Search in Google Scholar

[30] F.J.Humphreys, M.Hatherly: Recrystallisation and related Annealing Phenomena, Pergamon, Oxford, UK (1995) 312.10.1016/B978-0-08-041884-1.50017-9Search in Google Scholar

[31] H.Beladi, M.R.Barnett: Mater. Sci. Eng. A452–453 (2007) 306. 10.1016/j.msea.2006.10.125Search in Google Scholar

[32] G.W.Lorimer, L.W.F.Mackenzie, F.J.Humphreys, T.Wilks: Mater. Sci. Forum488–489 (2005) 99. 10.4028/www.scientific.net/MSF.488-489.99Search in Google Scholar

[33] N.Stanford, M.Ferry, in: T. Sakai and H. G. Suzuki (Eds.), The fourth International Conference on Recrystallisation and Related Phenomena (1999).Search in Google Scholar

[34] F.J.Humphreys, in: T.Chandra (Ed.), Particle Simulated Nucleation of Recrystallisation. Recrystallisation'90 (1990).Search in Google Scholar

[35] L.W.F.Mackenzie, B.Davis, F.J.Humphreys, G.W.Lorimer: Mater. Sci. Tech.23 (2007) 1173. 10.1179/174328407X22650910.1179/174328407X226509Search in Google Scholar

[36] R.Cottam, J.Robson, G.Lorimer, B.Davis: Mater. Sci. Eng. A485 (2008) 375. 10.1016/j.msea.2007.08.01610.1016/j.msea.2007.08.016Search in Google Scholar

[37] K.Hantzsche, J.Bohlen, J.Wendt, K.U.Kainer, S.B.Yi, D.Letzig: Scr. Mater.63 (2010) 725. 10.1016/j.scriptamat.2009.12.03310.1016/j.scriptamat.2009.12.033Search in Google Scholar

[38] N.Stanford: Mater. Sci. Eng. A527 (2010) 2669. 10.1016/j.msea.2009.12.03610.1016/j.msea.2009.12.036Search in Google Scholar

[39] H.Jin, J.Li, F.Ski, S.Saimoto: Mater. Sci. Forum331–337 (2000) 745.10.4028/www.scientific.net/MSF.331-337.745Search in Google Scholar

[40] A.G.Beer, M.R.Barnett: Mater. Sci. Eng. A485 (2008) 318. 10.1016/j.msea.2007.08.00110.1016/j.msea.2007.08.001Search in Google Scholar

Received: 2011-4-14
Accepted: 2012-2-14
Published Online: 2013-05-15
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Award/Preisverleihung
  4. The Werner-Köster-Preis 2011
  5. Original Contributions
  6. Ostwald ripening in Al–Li alloys: A test of theory
  7. The Mg–C phase equilibria and their thermodynamic basis
  8. Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
  9. Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
  10. Severe tempering of bainite generated at low transformation temperatures
  11. A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
  12. Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
  13. Properties of Si3N4/SiC composites produced via spark plasma sintering
  14. Formation of Al67Cu23Fe10 quasicrystals by microwave heating
  15. Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
  16. On the texture and grain growth in hot-deformed and annealed WE54 alloy
  17. Numerical study of equal-channel angular pressing based on the element-free Galerkin method
  18. Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
  19. Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
  20. Controlled release of ofloxacin from gelatin blended with cloisite 30B
  21. Short Communications
  22. Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
  23. People
  24. Horst Vehoff 65 years
  25. DGM News
  26. DGM News
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110768/html
Scroll to top button