Ostwald ripening in Al–Li alloys: A test of theory
-
Ben A. Pletcher
, Ke-Gang Wang and Martin E. Glicksman
Abstract
Experimental characterization of microstructure evolution in three binary Al–Li alloys provides a quantitative test of diffusion screening theory. Particle size distributions, growth kinetics, and maximum particle sizes are obtained through quantitative, centered dark-field transmission electron microscopy. The dependences on δ′ precipitate volume fraction of the coarsening rate constant and maximum particle size are revealed, both of which have eluded determination for a half century. These experiments show that the diffusion screening theory for late-stage phase coarsening yields accurate predictions of maximum size of particle and relative coarsening constant.
References
[1] K.G.Wang, M.E.Glicksman, in: J.R.Groza, J.F.Shackelford, E.J.Lavernia, M.T.Powers (Eds.), Processing Handbook, CRC Press, Boca Raton (2007), 5–1.Search in Google Scholar
[2] K.G.Wang, Z.Guo, W.Sha, M.E.Glicksman, K.Rajan: Acta Mater.53 (2005) 3395. 10.1016/j.actamat.2005.03.04110.1016/j.actamat.2005.03.041Search in Google Scholar
[3] I.M.Lifshitz, V.V.Slyozov: J. Phys. Chem. Solids.19 (1961) 35. 10.1016/0022-3697(61)90054-310.1016/0022-3697(61)90054-3Search in Google Scholar
[4] C.Wagner: Z. Elektrochem.65 (1961) 581.10.1001/archopht.1961.01840020583023Search in Google Scholar
[5] K.G.Wang: Physica A387 (2008) 3084. 10.1016/j.physa.2008.02.01210.1016/j.physa.2008.02.012Search in Google Scholar
[6] A.J.Ardell: Acta Metall.20 (1972) 61. 10.1016/0001-6160(72)90114-910.1016/0001-6160(72)90114-9Search in Google Scholar
[7] A.D.Brailsford, P.Wynblatt: Acta Metall.27 (1979) 489. 10.1016/0001-6160(79)90041-510.1016/0001-6160(79)90041-5Search in Google Scholar
[8] C.K.L.Davies, P.Nash, R.N.Stevens: Acta Mater.28 (1980) 179. 10.1016/0001-6160(80)90067-X10.1016/0001-6160(80)90067-XSearch in Google Scholar
[9] K.Tsumuraya, Y.Miyata: Acta Metall.31 (1983) 437. 10.1016/0001-6160(83)90221-310.1016/0001-6160(83)90221-3Search in Google Scholar
[10] J.A.Marqusee, J.Ross: J. Chem. Phys.80 (1984) 536. 10.1063/1.44642710.1063/1.446427Search in Google Scholar
[11] M.Marder: Phys. Rev. A36 (1987) 858. 989893210.1103/PhysRevA.36.85810.1103/PhysRevA.36.858Search in Google Scholar
[12] J.H.Yao, K.R.Elder, H.Guo, M.Grant: Phys. Rev. B47 (1993) 14110. 10.1103/PhysRevB.47.1411010.1103/PhysRevB.47.14110Search in Google Scholar
[13] M.Tokuyama, Y.Enomoto: Phys. Rev. E47 (1993) 1156. 10.1103/PhysRevE.47.115610.1103/PhysRevE.47.1156Search in Google Scholar
[14] S.P.Marsh, M.E.Glicksman: Acta Mater.44 (1996) 3761. 10.1016/1359-6454(95)00451-310.1016/1359-6454(95)00451-3Search in Google Scholar
[15] P.W.Voorhees: J. Stat. Phys.38 (1985) 231; Ann. Rev. Mater. Sci. 22 (1992) 197. 10.1146/annurev.ms.22.080192.00121310.1007/BF01017860Search in Google Scholar
[16] A.Baldan: J. Mater. Sci.37 (2002) 2171. 10.1023/A:101538891272910.1023/A:1015388912729Search in Google Scholar
[17] K.G.Wang, M.E.Glicksman, K.Rajan: Phys. Rev. E69 (2004) 061507. 10.1103/PhysRevE.69.06150710.1103/PhysRevE.69.061507Search in Google Scholar
[18] M.E.Glicksman, K.G.Wang, S.P.Marsh: J. Crystal Growth230 (2001) 318. 10.1016/S0022-0248(01)01340-910.1016/S0022-0248(01)01340-9Search in Google Scholar
[19] K.G.Wang, M.E.Glicksman, K.Rajan: Comput. Mater. Sci.34 (2005) 235. 10.1016/j.commatsci.2004.11.00510.1016/j.commatsci.2004.11.005Search in Google Scholar
[20] S.Abis, R.Caciuffo, F.Carsughi, R.Coppola, M.Magnani, F.Rustichelli, M.Stefanon: Phys. Rev. B42 (1990) 2275. 10.1103/PhysRevB.42.227510.1103/PhysRevB.42.2275Search in Google Scholar
[21] B.P.Gu, G.L.Liedl, J.H.Kulwicki, T.H.Sanders, Jr.: Mater. Sci. Eng.70 (1985) 217. 10.1016/0025-5416(85)90284-810.1016/0025-5416(85)90284-8Search in Google Scholar
[22] K.Mahalingam, B.P.Gu, G.L.Liedl, T.H.Sanders, Jr.: Acta Metall.35 (1987) 483. 10.1016/0001-6160(87)90254-910.1016/0001-6160(87)90254-9Search in Google Scholar
[23] B.P.Gu, G.L.Liedl, K.Mahalingam, T.H.Sanders, Jr.: Mater. Sci. Eng.78 (1986) 71. 10.1016/0025-5416(86)90081-910.1016/0025-5416(86)90081-9Search in Google Scholar
[24] J.Alkemper, V.A.Snyder, N.Akaiwa, P.W.Voorhees: Phys. Rev. Lett.82 (1999) 2725. 10.1103/PhysRevLett.82.272510.1103/PhysRevLett.82.2725Search in Google Scholar
[25] B.A.Pletcher: Kinetics of Aluminum Lithium alloys. Ph.D. Dissertation, University of Florida (2009).Search in Google Scholar
[26] O.Blaschko, R.Glas, P.Weinzierl: Acta Metall.38 (1990) 1053. 10.1016/0956-7151(90)90178-J10.1016/0956-7151(90)90178-JSearch in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2011
- Original Contributions
- Ostwald ripening in Al–Li alloys: A test of theory
- The Mg–C phase equilibria and their thermodynamic basis
- Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
- Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
- Severe tempering of bainite generated at low transformation temperatures
- A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
- Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
- Properties of Si3N4/SiC composites produced via spark plasma sintering
- Formation of Al67Cu23Fe10 quasicrystals by microwave heating
- Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
- On the texture and grain growth in hot-deformed and annealed WE54 alloy
- Numerical study of equal-channel angular pressing based on the element-free Galerkin method
- Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
- Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
- Controlled release of ofloxacin from gelatin blended with cloisite 30B
- Short Communications
- Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
- People
- Horst Vehoff 65 years
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2011
- Original Contributions
- Ostwald ripening in Al–Li alloys: A test of theory
- The Mg–C phase equilibria and their thermodynamic basis
- Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
- Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
- Severe tempering of bainite generated at low transformation temperatures
- A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
- Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
- Properties of Si3N4/SiC composites produced via spark plasma sintering
- Formation of Al67Cu23Fe10 quasicrystals by microwave heating
- Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
- On the texture and grain growth in hot-deformed and annealed WE54 alloy
- Numerical study of equal-channel angular pressing based on the element-free Galerkin method
- Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
- Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
- Controlled release of ofloxacin from gelatin blended with cloisite 30B
- Short Communications
- Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
- People
- Horst Vehoff 65 years
- DGM News
- DGM News