Home Ostwald ripening in Al–Li alloys: A test of theory
Article
Licensed
Unlicensed Requires Authentication

Ostwald ripening in Al–Li alloys: A test of theory

  • Ben A. Pletcher , Ke-Gang Wang and Martin E. Glicksman
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

Experimental characterization of microstructure evolution in three binary Al–Li alloys provides a quantitative test of diffusion screening theory. Particle size distributions, growth kinetics, and maximum particle sizes are obtained through quantitative, centered dark-field transmission electron microscopy. The dependences on δ′ precipitate volume fraction of the coarsening rate constant and maximum particle size are revealed, both of which have eluded determination for a half century. These experiments show that the diffusion screening theory for late-stage phase coarsening yields accurate predictions of maximum size of particle and relative coarsening constant.


Correspondence address Ke-Gang Wang, Associate Professor, Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901, USA, Tel.: 1-321-6748799, Fax: 1-321-6748813, E-mail:

References

[1] K.G.Wang, M.E.Glicksman, in: J.R.Groza, J.F.Shackelford, E.J.Lavernia, M.T.Powers (Eds.), Processing Handbook, CRC Press, Boca Raton (2007), 51.Search in Google Scholar

[2] K.G.Wang, Z.Guo, W.Sha, M.E.Glicksman, K.Rajan: Acta Mater.53 (2005) 3395. 10.1016/j.actamat.2005.03.04110.1016/j.actamat.2005.03.041Search in Google Scholar

[3] I.M.Lifshitz, V.V.Slyozov: J. Phys. Chem. Solids.19 (1961) 35. 10.1016/0022-3697(61)90054-310.1016/0022-3697(61)90054-3Search in Google Scholar

[4] C.Wagner: Z. Elektrochem.65 (1961) 581.10.1001/archopht.1961.01840020583023Search in Google Scholar

[5] K.G.Wang: Physica A387 (2008) 3084. 10.1016/j.physa.2008.02.01210.1016/j.physa.2008.02.012Search in Google Scholar

[6] A.J.Ardell: Acta Metall.20 (1972) 61. 10.1016/0001-6160(72)90114-910.1016/0001-6160(72)90114-9Search in Google Scholar

[7] A.D.Brailsford, P.Wynblatt: Acta Metall.27 (1979) 489. 10.1016/0001-6160(79)90041-510.1016/0001-6160(79)90041-5Search in Google Scholar

[8] C.K.L.Davies, P.Nash, R.N.Stevens: Acta Mater.28 (1980) 179. 10.1016/0001-6160(80)90067-X10.1016/0001-6160(80)90067-XSearch in Google Scholar

[9] K.Tsumuraya, Y.Miyata: Acta Metall.31 (1983) 437. 10.1016/0001-6160(83)90221-310.1016/0001-6160(83)90221-3Search in Google Scholar

[10] J.A.Marqusee, J.Ross: J. Chem. Phys.80 (1984) 536. 10.1063/1.44642710.1063/1.446427Search in Google Scholar

[11] M.Marder: Phys. Rev. A36 (1987) 858. 989893210.1103/PhysRevA.36.85810.1103/PhysRevA.36.858Search in Google Scholar

[12] J.H.Yao, K.R.Elder, H.Guo, M.Grant: Phys. Rev. B47 (1993) 14110. 10.1103/PhysRevB.47.1411010.1103/PhysRevB.47.14110Search in Google Scholar

[13] M.Tokuyama, Y.Enomoto: Phys. Rev. E47 (1993) 1156. 10.1103/PhysRevE.47.115610.1103/PhysRevE.47.1156Search in Google Scholar

[14] S.P.Marsh, M.E.Glicksman: Acta Mater.44 (1996) 3761. 10.1016/1359-6454(95)00451-310.1016/1359-6454(95)00451-3Search in Google Scholar

[15] P.W.Voorhees: J. Stat. Phys.38 (1985) 231; Ann. Rev. Mater. Sci. 22 (1992) 197. 10.1146/annurev.ms.22.080192.00121310.1007/BF01017860Search in Google Scholar

[16] A.Baldan: J. Mater. Sci.37 (2002) 2171. 10.1023/A:101538891272910.1023/A:1015388912729Search in Google Scholar

[17] K.G.Wang, M.E.Glicksman, K.Rajan: Phys. Rev. E69 (2004) 061507. 10.1103/PhysRevE.69.06150710.1103/PhysRevE.69.061507Search in Google Scholar

[18] M.E.Glicksman, K.G.Wang, S.P.Marsh: J. Crystal Growth230 (2001) 318. 10.1016/S0022-0248(01)01340-910.1016/S0022-0248(01)01340-9Search in Google Scholar

[19] K.G.Wang, M.E.Glicksman, K.Rajan: Comput. Mater. Sci.34 (2005) 235. 10.1016/j.commatsci.2004.11.00510.1016/j.commatsci.2004.11.005Search in Google Scholar

[20] S.Abis, R.Caciuffo, F.Carsughi, R.Coppola, M.Magnani, F.Rustichelli, M.Stefanon: Phys. Rev. B42 (1990) 2275. 10.1103/PhysRevB.42.227510.1103/PhysRevB.42.2275Search in Google Scholar

[21] B.P.Gu, G.L.Liedl, J.H.Kulwicki, T.H.Sanders, Jr.: Mater. Sci. Eng.70 (1985) 217. 10.1016/0025-5416(85)90284-810.1016/0025-5416(85)90284-8Search in Google Scholar

[22] K.Mahalingam, B.P.Gu, G.L.Liedl, T.H.Sanders, Jr.: Acta Metall.35 (1987) 483. 10.1016/0001-6160(87)90254-910.1016/0001-6160(87)90254-9Search in Google Scholar

[23] B.P.Gu, G.L.Liedl, K.Mahalingam, T.H.Sanders, Jr.: Mater. Sci. Eng.78 (1986) 71. 10.1016/0025-5416(86)90081-910.1016/0025-5416(86)90081-9Search in Google Scholar

[24] J.Alkemper, V.A.Snyder, N.Akaiwa, P.W.Voorhees: Phys. Rev. Lett.82 (1999) 2725. 10.1103/PhysRevLett.82.272510.1103/PhysRevLett.82.2725Search in Google Scholar

[25] B.A.Pletcher: Kinetics of Aluminum Lithium alloys. Ph.D. Dissertation, University of Florida (2009).Search in Google Scholar

[26] O.Blaschko, R.Glas, P.Weinzierl: Acta Metall.38 (1990) 1053. 10.1016/0956-7151(90)90178-J10.1016/0956-7151(90)90178-JSearch in Google Scholar

Received: 2011-6-16
Accepted: 2012-3-1
Published Online: 2013-05-15
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Award/Preisverleihung
  4. The Werner-Köster-Preis 2011
  5. Original Contributions
  6. Ostwald ripening in Al–Li alloys: A test of theory
  7. The Mg–C phase equilibria and their thermodynamic basis
  8. Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
  9. Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
  10. Severe tempering of bainite generated at low transformation temperatures
  11. A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
  12. Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
  13. Properties of Si3N4/SiC composites produced via spark plasma sintering
  14. Formation of Al67Cu23Fe10 quasicrystals by microwave heating
  15. Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
  16. On the texture and grain growth in hot-deformed and annealed WE54 alloy
  17. Numerical study of equal-channel angular pressing based on the element-free Galerkin method
  18. Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
  19. Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
  20. Controlled release of ofloxacin from gelatin blended with cloisite 30B
  21. Short Communications
  22. Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
  23. People
  24. Horst Vehoff 65 years
  25. DGM News
  26. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110777/pdf
Scroll to top button