Numerical study of equal-channel angular pressing based on the element-free Galerkin method
-
Guan Yanjin
, Zhao Guoqun and Lu Ping
Abstract
Based on the flow formulation for rigid–plastic/viscoplastic materials, a rigid–plastic/viscoplastic element-free Galerkin method is established to realize the simulation of massive metal-forming processes. Stiffness equations and solution formulae are derived in terms of the incomplete generalized variational principle. The transformation method is employed to exert the essential boundary condition in the local coordinate system. The arctangent frictional model is used to implement the frictional boundary conditions, and the transform matrix from the global coordinate system to local coordinate system is given. Being similar to finite-element simulations, the key techniques for metal-forming meshless analysis such as the treatment of the rigid region, dynamic adjustment of the boundary nodes, and treatment of volumetric locking are developed. The analysis software is developed. The equal-channel angular pressing process is simulated numerically using the software. The effective strains become larger and more uniform with increasing curve angle Ψ. On the other hand, the forming load increases greatly with the increase in the curve angle Ψ. The effective strains change slightly with the change of the frictional status between the die and the workpiece. However, the frictional status influences greatly the forming load.
References
[1] T.Belytschko, Y.Y.Lu, L.Gu: Int. J. Numer. Methods Eng.37 (1994) 229. 10.1002/nme.162037020510.1002/nme.1620370205Search in Google Scholar
[2] W.K.Liu, S.Jun, Y.F.Zhang: Int. J. Numer. Methods Fluids20 (1995) 1081. 10.1002/fld.165020082410.1002/fld.1650200824Search in Google Scholar
[3] S.N.Atluri, T.L.Zhu: Comput. Mech.22 (1998) 117. 10.1007/s00466005034610.1007/s004660050346Search in Google Scholar
[4] N.R.Aluru: Int. J. Numer. Methods Eng.47 (2000) 1083. 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-NSearch in Google Scholar
[5] T.Belytschko, D.Organ, C.Gerlach: Comp. Meth. Appl. Mech. Eng.187 (2000) 385. 10.1016/S0045-7825(00)80002-X10.1016/S0045-7825(00)80002-XSearch in Google Scholar
[6] C.A.Duarte, O.N.Hamzeh, T.J.Liszka: Comp. Meth. Appl. Mech. Eng.190 (2001) 2227. 10.1016/S0045-7825(00)00233-410.1016/S0045-7825(00)00233-4Search in Google Scholar
[7] L.Gao, K.Liu, Y.Liu: Comp. Model. Eng. Sci.12 (2006) 181.Search in Google Scholar
[8] J.S.Chen, C.Roque, C.Pan: J. Mater. Process. Technol.80-81 (1998) 642. 10.1016/S0924-0136(98)00171-X10.1016/S0924-0136(98)00171-XSearch in Google Scholar
[9] J.S.Chen, C.Pan, C.Roque: Comput. Mech.22 (1998) 89. 10.1007/s00466005036110.1007/s004660050361Search in Google Scholar
[10] J.SChenH.P.Wang: Comp. Meth. Appl. Mech. Eng.187 (2000) 441. 10.1016/S0045-7825(00)80004-310.1016/S0045-7825(00)80004-3Search in Google Scholar
[11] J.Bonet, S.Kulaseqaram: Int. J. Numer. Methods Eng.47 (2000) 1189. 10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-ISearch in Google Scholar
[12] S.W.Xiong, C.S.Li, J.M.C.Rodrigues: Finite Elem. Anal. Des.41 (2005) 599. 10.1016/j.finel.2004.10.00310.1016/j.finel.2004.10.003Search in Google Scholar
[13] S.W.Xiong, W.K.Liu, J.Gao, C.S.Li, J.M.C.Rodrigues, P.A.F.Martins: Comp. Struct.83 (2005) 574. 10.1016/j.compstruc.2004.11.00810.1016/j.compstruc.2004.11.008Search in Google Scholar
[14] S.W.Xiong, P.A.F.Martins: J. Mater. Process. Technol.177 (2006) 49. 10.1016/j.jmatprotec.2006.03.20410.1016/j.jmatprotec.2006.03.204Search in Google Scholar
[15] Y.H.Park: Comp. Technol. Appl.458 (2003) 231. 10.1115/PVP2003-190710.1115/PVP2003-1907Search in Google Scholar
[16] Y.H.Park: Comp. Technol.2 (2005) 385.Search in Google Scholar
[17] Y.H.Park: J. Mater. Process. Technol.183 (2007) 256. 10.1016/j.jmatprotec.2006.08.03210.1016/j.jmatprotec.2006.08.032Search in Google Scholar
[18] G.Y.Li, K.Sidibe, G.R.Liu: Eng. Anal. Bound. Elem.28 (2004) 1283. 10.1016/j.enganabound.2003.11.00510.1016/j.enganabound.2003.11.005Search in Google Scholar
[19] G.Y.Li, T.Belytscko: Eng. Comput.18 (2001) 62.10.1108/02644400110365806Search in Google Scholar
[20] Y.M.Guo, K.Nakanishi: J. Mater. Process. Technol.140 (2003) 19. 10.1016/S0924-0136(03)00696-410.1016/S0924-0136(03)00696-4Search in Google Scholar
[21] Y.M.Guo, K.Nakanishi, Y.Yokouchi: Adv. Eng. Softw.36 (2005) 234. 10.1016/j.advengsoft.2004.10.01210.1016/j.advengsoft.2004.10.012Search in Google Scholar
[22] I.Alfaro, D.Bel, E.Cueto: Comp. Meth. Appl. Mech. Eng.195 (2006) 4269. 10.1016/j.cma.2005.08.00610.1016/j.cma.2005.08.006Search in Google Scholar
[23] I.Alfaro, J.Yvonnet, E.Cueto: Comp. Meth. Appl. Mech. Eng.195 (2006) 6661. 10.1016/j.cma.2004.10.01710.1016/j.cma.2004.10.017Search in Google Scholar
[24] H.Wang, G.Y.Li, X.Han, Z.H.Zhong: Adv. Eng. Softw.38 (2007) 87. 10.1016/j.advengsoft.2006.08.00210.1016/j.advengsoft.2006.08.002Search in Google Scholar
[25] H.Wang, G.Y.Li, Z.H.Zhong: Eng. Anal. Bound. Elem.31 (2007) 326. 10.1016/j.enganabound.2006.09.00710.1016/j.enganabound.2006.09.007Search in Google Scholar
[26] K.C.Kwon, S.H.Park, S.K.Youn: Int. J. Numer. Methods Eng.64 (2005) 751. 10.1002/nme.138410.1002/nme.1384Search in Google Scholar
[27] K.C.Kwon, S.K.Youn: Int. J. Solids Struct.43 (2006) 7450. 10.1016/j.ijsolstr.2006.03.01010.1016/j.ijsolstr.2006.03.010Search in Google Scholar
[28] X.Wu, G.Q.Zhao, W.D.Wang, Y.J.Guan, P.Lu: Chin. J. Mech. Eng. (English Edition)20 (2007) 26. 10.3901/CJME.2007.02.02610.3901/CJME.2007.02.026Search in Google Scholar
[29] P.Lu, G.Q.Zhao, Y.J.Guan, X.Wu: Mater. Sci. Eng. A479 (2008) 197. 10.1016/j.msea.2007.06.05910.1016/j.msea.2007.06.059Search in Google Scholar
[30] V.M.Segal, V.I.Reznikov, A.E.Drobyshevskiy, V.I.Kopylov: Russ. Metall.1 (1981) 115.Search in Google Scholar
[31] Q.X.Pei, B.H.Hu, C.Lu, Y.Y.Wang: Scr. Mater.49 (2003) 303. 10.1016/S1359-6462(03)00284-710.1016/S1359-6462(03)00284-7Search in Google Scholar
[32] G.Krallics, Z.Szeles, D.Malgyn: Mater. Sci. Forum414–415 (2003) 439. 10.4028/www.scientific.net/MSF.414-415.43910.4028/www.scientific.net/MSF.414-415.439Search in Google Scholar
[33] S.Dumoulin, H.J.Roven, J.C.Werenskiold: Mater. Sci. Eng. A410–411 (2005) 248.Search in Google Scholar
[34] S.B.Xu, G.Q.Zhao, Y.G.Luan, Y.J.Guan: J. Mater. Process. Technol.176 (2006) 251. 10.1016/j.jmatprotec.2006.03.16710.1016/j.jmatprotec.2006.03.167Search in Google Scholar
[35] T.Su, Y.L.Li, Y.Z.Guo, Y.Y.Liu: Mater. Sci. Eng. A432 (2006) 269. 10.1016/j.msea.2006.06.03510.1016/j.msea.2006.06.035Search in Google Scholar
[36] C.W.Su, L.Lu, M.O.Lai: Mater. Sci. Technol.23(2007) 727. 10.1179/174328407X17972810.1179/174328407X179728Search in Google Scholar
[37] M.J.O'BH.F.von Bremen, M.Furukawa, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A456 (2007) 236. 10.1016/j.msea.2006.11.11610.1016/j.msea.2006.11.116Search in Google Scholar
[38] V.S.Zhernakov, I.N.Budilov, I.V.Alexandrov, I.J.Beyerlein: Int. J. Mater. Res.98 (2007) 178.Search in Google Scholar
[39] J.S.Chen, C.Pan, C.T.Wu, W.K.Liu: Comp. Meth. Appl. Mech. Eng.139 (1996) 195. 10.1016/S0045-7825(96)01083-310.1016/S0045-7825(96)01083-3Search in Google Scholar
[40] S.Kobayashi, S.I.Oh, T.Altan: Metal-forming and the finite-element method, Oxford University Press, New York (1989).10.1093/oso/9780195044027.001.0001Search in Google Scholar
[41] J.S.Chen, S.Yoon, H.P.Wang, W.K.Liu: Comp. Meth. Appl. Mech. Eng.181 (2000) 117. 10.1016/S0045-7825(99)00067-510.1016/S0045-7825(99)00067-5Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2011
- Original Contributions
- Ostwald ripening in Al–Li alloys: A test of theory
- The Mg–C phase equilibria and their thermodynamic basis
- Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
- Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
- Severe tempering of bainite generated at low transformation temperatures
- A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
- Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
- Properties of Si3N4/SiC composites produced via spark plasma sintering
- Formation of Al67Cu23Fe10 quasicrystals by microwave heating
- Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
- On the texture and grain growth in hot-deformed and annealed WE54 alloy
- Numerical study of equal-channel angular pressing based on the element-free Galerkin method
- Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
- Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
- Controlled release of ofloxacin from gelatin blended with cloisite 30B
- Short Communications
- Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
- People
- Horst Vehoff 65 years
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2011
- Original Contributions
- Ostwald ripening in Al–Li alloys: A test of theory
- The Mg–C phase equilibria and their thermodynamic basis
- Experimental and thermodynamic study of nickel (30 wt.%Cr) – based alloys containing between 2.5 and 5.0 wt.% carbon
- Thermodynamic description of the system Cu–Sn–P experimental and numerical investigation
- Severe tempering of bainite generated at low transformation temperatures
- A comparative study of microstructure, compressive, and fracture properties of Ti3Al-based intermetallics produced via powder metallurgy, and melting and casting processes
- Rod-like structure and microhardness during directional solidification of Sn-1wt.%Cu eutectic alloy
- Properties of Si3N4/SiC composites produced via spark plasma sintering
- Formation of Al67Cu23Fe10 quasicrystals by microwave heating
- Magnetoelectric characteristics of cobalt-iron alloy–lead zirconate titanate bilayer planar structures
- On the texture and grain growth in hot-deformed and annealed WE54 alloy
- Numerical study of equal-channel angular pressing based on the element-free Galerkin method
- Dynamic behavior of staggered triangular honeycomb cores under in-plane crushing loadings
- Preparation and characterization of polyaniline/Fe3O4–polyacrylonitrile composite nanofibers
- Controlled release of ofloxacin from gelatin blended with cloisite 30B
- Short Communications
- Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders
- People
- Horst Vehoff 65 years
- DGM News
- DGM News