Home Morphological characterization of the Al–Ag–Cu ternary eutectic
Article
Licensed
Unlicensed Requires Authentication

Morphological characterization of the Al–Ag–Cu ternary eutectic

  • Amber Genau and Lorenz Ratke
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Ternary eutectic microstructures have a level of complexity far exceeding that of binary eutectics. As there is currently no detailed description of ternary eutectic structures in the literature, we have undertaken a systematic investigation of the structures formed by directional solidification of the ternary eutectic Al–Ag–Cu. Using a constant temperature gradient of 3 K mm−1 and solidification velocities between 0.2 and 5 μm s−1, we are able to observe different forms of the eutectic structure with varying degrees of alignment. We describe these structures both qualitatively and quantitatively, using measures including the volume fraction and composition of all phases, the distribution of interphase separations, and the number of nearest neighbor phases. The effects of solid-state transformations on the microstructure are also discussed.


* Correspondence address Dr. Amber Genau University of Alabama at Birmingham Materials Science and Engineering, BEC 254 1150 10th Ave. South Birmingham, AL 35294, USA Tel.: +12059753271 Fax: +12059348485 E-mail:

References

[1] K.Jackson, J.Hunt: Trans. Metall. Soc. AIME236 (1966) 1129.Search in Google Scholar

[2] W.Kurz, P.Sahm: Gerichtet erstarrte eutektische Werkstoffe, Springer Verlag, Berlin (1975). 10.1007/978-3-642-65993-5Search in Google Scholar

[3] R.Elliott: Eutectic Solidification Processing, Butterworths, London (1983).Search in Google Scholar

[4] G.Faivre, J.Mergy: Phys. Rev. A45 (1992) 7320. PMid: 990680710; 1103/PhysRevA.45.7320Search in Google Scholar

[5] G.Faivre, J.Mergy: Phys. Rev. A46 (1992) 963. PMid: 990819810; 1103/PhysRevA.46.963Search in Google Scholar

[6] M.Ginibre, S.Akamatsu, G.Faivre: Phys. Rev. E56 (1997) 780. 10.1103/PhysRevE.56.780Search in Google Scholar

[7] K.Kassner: Pattern formation in diffusion-limited crystal growth, World Scientific, Singapore (1996).10.1142/2146Search in Google Scholar

[8] U.Hecht, L.Granasy, T.Pusztai, M.Apel, V.Witusiewicz, L.Ratke, J.D.Wilde, L.Froyen, D.Camel, B.Drevel, G.Faivre, S.Fries, B.Legendre, S.Rex: Mater. Sci. Eng. R46 (2224) 1.Search in Google Scholar

[9] D.Cooksey, A.Hellawell: J. Metal.95 (1967) 183.Search in Google Scholar

[10] M.Ruggiero, J.Rutter: Mater. Sci. Technol.13 (1997) 5.Search in Google Scholar

[11] D.Lewis, S.Allen, M.Notis, A.Scotch: J. Electron. Mater.31 (2002) 161. 10.1007/s11664-002-0163-ySearch in Google Scholar

[12] H.Kerr, A.Plumtree, W.Winegard: J. Metal.93 (1964–1965) 166.10.1016/0030-4220(65)90184-2Search in Google Scholar

[13] S.Rex, B.Böttger, V.Witusiewicz, U.Hecht: Mater. Sci. Eng. A413 (2005) 249. 10.1016/j.msea.2005.09.019Search in Google Scholar

[14] C.T.Rios, S.Milenkovic, S.Gama, R.Caram: J. Cryst. Growth237–239 (2002) 90. 10.1016/S0022-0248(01)01873-5Search in Google Scholar

[15] A.Hawksworth, W.Rainforth, H.Jones: Scripta Mater.39 (1998) 1371. 10.1016/S1359-6462(98)00316-9Search in Google Scholar

[16] R.Schaefer, D.Lewis: Met. Mater. Trans. A36 (2005) 2775. 10.1007/s11661-005-0273-2Search in Google Scholar

[17] T.Himemiya, T.Umeda: Mater. T. JIM40 (1999) 665.Search in Google Scholar

[18] D.McCartney, R.Jordan, J.Hunt: Met. Trans. A11 (1980) 1251.Search in Google Scholar

[19] G.Garmong: Met. Trans.2 (1971) 2025.10.1007/BF02917528Search in Google Scholar

[20] J.D.Wilde, J.Froyen, S.Rex: Scripta Mater.51 (2004) 533. 10.1016/j.scriptamat.2004.05.040Search in Google Scholar

[21] J.D.Wilde, E.Nagels, F.Lemoisson, L.Froyen: Mater. Sci. Eng.413–414 (2005) 514. 10.1016/j.msea.2005.08.171Search in Google Scholar

[22] V.Witusiewicz, U.Hecht, S.Fries, S.Rex: J. Alloys Compd.387 (2005) 217. 10.1016/j.jallcom.2004.06.078Search in Google Scholar

[23] J.Alkemper, S.Sous, C.Stöcker, L.Ratke: J. Cryst. Growth191 (1998) 252. 10.1016/S0022-0248(98)00114-6Search in Google Scholar

[24] AnalySIS, Soft Imaging System GmbH, 1986–2002.Search in Google Scholar

[25] Y.Chang, J.Neumann: J. Phys. Chem. Solids28 (1967) 2117. 10.1016/0022-3697(67)90234-XSearch in Google Scholar

[26] L.Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, London (1976).Search in Google Scholar

[27] D.Double, P.Truelove, A.Hellawell: J. Cryst. Growth2 (1968) 191. 10.1016/0022-0248(68)90001-8Search in Google Scholar

[28] T.Attallah, J.Gruzleski: J. Cryst. Growth34 (1976) 164. 10.1016/0022-0248(76)90125-1Search in Google Scholar

Received: 2010-2-2
Accepted: 2011-11-4
Published Online: 2013-06-11
Published in Print: 2012-04-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Mullite 2011
  5. Original Contributions
  6. Mullite and mullite-type crystal structures
  7. Faradaic current in different mullite materials: single crystal, ceramic and cermets
  8. Metakaolin–nanosilver as biocide mullite precursor
  9. Sintering of mullite–β-eucryptite ceramics with very low thermal expansion
  10. Crystal chemistry and properties of mullite-type Bi2M4O9: An overview
  11. Temperature-dependent 57Fe Mössbauer spectroscopy and local structure of mullite-type Bi2(FexAl1x)4O9 (0.1≤x≤1) solid solutions
  12. Thermal expansion and elastic properties of mullite-type Bi2Ga4O9 and Bi2Fe4O9 single crystals
  13. Single crystal growth and characterization of mullite-type Bi2Mn4O10
  14. Synthesis and electrical conductivity of mullite-type Bi2Al4O9 and (Bi,Ca)2Al4O9 ceramics
  15. New pressure induced phase transitions in mullite-type Bi2(Fe4xMnx)O10δ complex oxides
  16. Morphological characterization of the Al–Ag–Cu ternary eutectic
  17. Bainite: Fragmentation of crystallographically homogeneous domains
  18. Influence of grain size on the dynamic recrystallization behavior of AISI 304 stainless steel during hot deformation
  19. Li–Cr substituted nickel–zinc–copper ferrite powders: structural and magnetic properties
  20. A model to calculate the viscosity of silicate melts
  21. Lattice dynamics analysis of the thermal properties of liquid iron
  22. Evaluation of the mechanical properties of natural asphalt-modified hot mixture
  23. Prediction of the transverse Young's modulus of unidirectional triangle-section carbon fiber reinforced plastics
  24. People
  25. Prof. Dr. Bernd Stritzker – 65th birthday
  26. Professor Dr.-Ing. Rainer Schmid-Fetzer – 65 Years
  27. DGM News
  28. DGM News
Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110652/html
Scroll to top button