Startseite Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT

  • Thomas Mottitschka , Gerhard Pusch , Horst Biermann , Lutz Zybell und Meinhard Kuna
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The employment of ferritic nodular cast iron for components subjected to high stress requires a detailed fracture mechanics evaluation of crack growth under static and cyclic loading. During operation, for instance, in wind power plants, such component parts are subjected to loading of variable amplitude, which influences their lifetime considerably. For the evaluation of crack propagation and the remaining service life in this case, the calculation methods currently well-established in practice cannot be employed for cast iron with nodular graphite, since overloads lead to microstructure-related and material-specific load history effects in terms of crack growth acceleration. In this work, investigations of crack growth under constant and variable amplitude loading as well as static fracture toughness investigations and strain-controlled cyclic deformation experiments are presented.


* Dipl.-Ing. Thomas Mottitschka, Gustav-Zeuner-Straβe 5, 09599 Freiberg, Germany. Tel.: +49 (0) 37 31 39-33 26, Fax: +49 (0) 37 31 39-37 03, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] F.Pollicino: DVM-Bericht239 (2007) p. 57.Suche in Google Scholar

[2] G.Pusch: Konstruieren + Gießen33 (2008) p. 2.Suche in Google Scholar

[3] H.Stroppe, G.Pusch, A.Ludwig: Konstruieren + Gießen29 (2004) p. 19.Suche in Google Scholar

[4] G.Pusch, P.Trubitz, B.Rehmer: Konstruieren + Gießen26 (2001) p. 4.Suche in Google Scholar

[5] W.Baer: Doctoral Thesis, TU Bergakademie Freiberg (1996).Suche in Google Scholar

[6] G.Pusch, B.Komber, O.Liesenberg: Konstruieren + Gießen21 (1996) p. 49.Suche in Google Scholar

[7] http://www.wind-energie.de, Bundesverband WindEnergie e.V. (2011).Suche in Google Scholar

[8] H.A.Richard, M.Sander: Ermüdungsrisse – Erkennen, sicher beurteilen, vermeiden. Vieweg + Teubner Verlag, Wiesbaden (2009).10.1007/978-3-8348-9232-4Suche in Google Scholar

[9] M.Sander, H.A.Richard: Fatigue Fract. Eng. Mater. Struct.29 (2006) p. 291.10.1111/j.1460-2695.2006.00992.xSuche in Google Scholar

[10] S.Rödling: Doctoral Thesis, Universität der Bundeswehr München, Fakultät für Luft und Raumfahrttechnik, Institut für Werkstoffkunde, 2003.Suche in Google Scholar

[11] J.Steinbock: Doctoral Thesis, Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik, Institut für Werkstoffkunde, 2008.Suche in Google Scholar

[12] J.Bär, S.Rödling, M.Broll, H.Gudladt: Mat.-wiss. u. Werkstofftech.33 (2002) p. 177.10.1002/1521-4052(200204)33:4<177::AID-MAWE177>3.0.CO;2-GSuche in Google Scholar

[13] P.Hübner, H.Schlosser, G.Pusch, H.Biermann: Int. J. Fat.29 (2007) p. 1788.10.1016/j.ijfatigue.2007.01.012Suche in Google Scholar

[14] T.Mottitschka, G.Pusch, H.Biermann, L.Zybell, M.Kuna: Proc. Eng.2 (2010) p.1557.10.1016/j.proeng.2010.03.168Suche in Google Scholar

[15] J.Ohser, U.Lorz: Quantitative Gefügeanalyse, Theoretische Grundlagen und Anwendung, Freiberger Forschungshefte B 276, Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig-Stuttgart (1994).Suche in Google Scholar

[16] J.Ohser, H.Tscherny: Grundlagen der quantitativen Gefügeanalyse, Freiberger Forschungshefte B 264, Deutscher Verlag für Grundstoffindustrie, Leipzig (1988).Suche in Google Scholar

[17] ISO 12135: Metallic materials – Unified method of test for the determination of quasistatic fracture toughness, 2002.Suche in Google Scholar

[18] ASTM E 1820-06: Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, United States, www.astm.org.Suche in Google Scholar

[19] ESIS P2-92: Procedure for determining the fracture behaviour of metallic materials, European Structural Integrity Society, Delft (1992).Suche in Google Scholar

[20] ASTM E 647-08: Standard test method for measurement of fatigue crack growth rates. ASTM International, West Conshohocken, 2008.www.astm.org.Suche in Google Scholar

[21] ISO 12108: Metallic materials – Fatigue testing – Fatigue crack growth method, 2002.Suche in Google Scholar

[22] A.A.ten Have: WISPER and WISPERX: Final definition of two standardised fatigue loading sequences for wind turbine blades, Technical publication NLR TP 91476 U (1991).Suche in Google Scholar

[23] L.Zybell, M.Kuna, T.Mottitschka, M.Hoffmann, G.Pusch, H.Biermann: DVM-Bericht241 (2009) p. 73.Suche in Google Scholar

[24] E.Roos: DVM-Bericht243 (2011) p. 153.Suche in Google Scholar

[25] J.D.Landes: Fatigue Fract. Eng. Mater. Struct.18 (1995) p. 1298.10.1111/j.1460-2695.1995.tb00855.xSuche in Google Scholar

[26] J.D.Landes: Int. J. Fract.145 (2007) p. 285.10.1007/s10704-007-9118-xSuche in Google Scholar

[27] S.Henkel, P.Hübner, G.Pusch: Konstruieren + Gießen33 (2008) p. 41.Suche in Google Scholar

Received: 2011-6-7
Accepted: 2011-10-25
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110636/pdf?lang=de
Button zum nach oben scrollen