Startseite Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films

  • Christoph Eberl , Diana Courty , Astrid Walcker und Oliver Kraft
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mechanical fatigue at frequencies in the GHz regime in submicron metal thin films is governed by size and frequency effects. The cyclic load can lead to damage formation also known as acoustomigration and determines the reliability of micro electro mechanical systems and surface acoustic wave devices. The size and frequency effects dramatically change the fatigue behavior compared to bulk material. The resulting damage structure is similar to electromigration experiments where void and extrusion formation lead to failure. Here, a dislocation based mechanism is presented which explains the damage formation. This mechanism is induced by gradients in cyclic shear stress which is induced by the short acoustic wave length at frequencies in the GHz regime. Discrete dislocation dynamic simulations are presented that reflect the dislocation behavior at these ultra high frequencies.


* Dr. Christoph Eberl, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlruhe, Germany. Tel.: +49 (0) 721 608 222 52, Fax: +49 (0) 721 608 223 47, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] W.D.Nix: Metall. Trans. A20 (1989) 2217.10.1007/BF02666659Suche in Google Scholar

[2] E.Arzt: Acta Mater.46 (1998) 5611.10.1016/S1359-6454(98)00231-6Suche in Google Scholar

[3] C.Laird, P.Charsley: T. Metall. Soc. AIME, PA (1982).Suche in Google Scholar

[4] S.E.Stanzl-Tschegg, H.Mayer: Int. J. Fatigue23 (2001) 231.10.1016/S0142-1123(01)00167-0Suche in Google Scholar

[5] S.E.Stanzl-Tschegg, H.Mughrabi, B.Schönbauer: Int. J. Fatigue29 (2007) 2050.10.1016/j.ijfatigue.2007.03.010Suche in Google Scholar

[6] H.Mayer, M.Papakyriacou, R.Pippan, S.E.Stanzl-Tschegg: Mater. Sci. Eng. A314 (2001) 48.10.1016/S0921-5093(00)01913-4Suche in Google Scholar

[7] R.J.Morrissey, D.L.McDowell, T.Nicholas: Int. J. Fatigue21 (1999) 679.10.1016/S0142-1123(99)00030-4Suche in Google Scholar

[8] F.Kubat, W.Ruile, T.Hesjedal, J.Stolz, U.Rösler, L.M.Reindl: IEEE T. Ultrason. Ferr.51 (2004) 1437.10.1109/TUFFC.2004.1367484Suche in Google Scholar

[9] H.W.HöppelM.Prell, L.May, M.Göken: Pro. Eng2 (2010) 1025.10.1016/j.proeng.2010.03.111Suche in Google Scholar

[10] Q.Y.Wang, N.Kawagoishi, Q.Chen: Int. J. Fatigue28 (2006) 1572.10.1016/j.ijfatigue.2005.09.017Suche in Google Scholar

[11] C.Eberl, R.Spolenak, O.Kraft, F.Kubat, W.Ruile, E.Arzt: J. Appl. Phys.99 (2006) 1135011.10.1063/1.2189970Suche in Google Scholar

[12] J.I.Latham, W.R.Shreve, N.J.Tolar, P.B.Ghate: Thin Solid Films64 (1979) 9.10.1016/0040-6090(79)90535-2Suche in Google Scholar

[13] I.A.Blech, E.S.Meieran: J. Appl. Phys.40 (1969) 485.10.1063/1.1657425Suche in Google Scholar

[14] R.Rosenberg: J. Appl. Phys.16 (1970) 27.10.1063/1.1653018Suche in Google Scholar

[15] S.Suresh: Fatigue of materials, Cambridge University Press, Cambridge (2003).Suche in Google Scholar

[16] C.Eberl, R.Spolenak, E.Arzt, F.Kubat, A.Leidl, W.Ruile, O.Kraft: Mater. Sci. Eng. A421 (2006) 68.10.1016/j.msea.2005.10.007Suche in Google Scholar

[17] W.Ruile, G.Raml, A.Springer, R.Weigel: Ultrason.1 (2000) 275.Suche in Google Scholar

[18] N.Shibagaki, K.Asai, T.Tabuchi, T.Hirashima, M.Hikita: Ultrason (1991) 439.Suche in Google Scholar

[19] S.Menzel, M.Pekarčíková, M.Hofmann, T.Gemming, K.Wetzig: Appl. Surf. Sci.252 (2005) 215.10.1016/j.apsusc.2005.02.020Suche in Google Scholar

[20] M.Pekarčíková, S.Menzel, D.Reitz, H.Schmidt, K.Wetzig: Microelectron. Eng.82 (2005) 607.10.1016/j.mee.2005.07.064Suche in Google Scholar

[21] P.G.Shewmon: Diffusion in solids, McGraw-Hill, Columbus (1963).Suche in Google Scholar

[22] C.Eberl, R.Spolenak, O.Kraft, W.Ruile, E.Arzt: Thin Solid Films515 (2007) 3291.10.1016/j.tsf.2006.01.042Suche in Google Scholar

[23] N.Hosaka, A.Yuhara, H.Watanabe, J.Yamada, M.Kajiyama: Jpn. J. Appl. Phys.27 (1988) 175.Suche in Google Scholar

[24] C.Eberl, H.Riesch-Oppermann, R.Spolenak, F.Kubat, W.Ruile, D.Courty, O.Kraft: IEEE T. Device Mat. Re.99 (2010).Suche in Google Scholar

[25] R.M.White, F.W.Voltmer: Appl. Phys. Lett.7 (1965) 314.10.1063/1.1754276Suche in Google Scholar

[26] K.Taki, Y.Shimizu, Jpn. J. Appl. Phys.33 (1994) 2976.10.1143/JJAP.33.2976Suche in Google Scholar

[27] Y.Ebata, S.Mitobe: Ultrason.1 (1998) 257.Suche in Google Scholar

[28] F.Kubat, W.Ruile, L.M.Reindl: Ultrason.1 (2002) 329.Suche in Google Scholar

[29] F.Kubat, W.Ruile, T.Hesjedal, J.Stotz, U.Rosler, L.Reindl: Ultrason.2 (2003) 1149.Suche in Google Scholar

[30] F.Kubat, W.Ruile, U.Rösler, C.C.W.Ruppel, L.M.Reindl: Ultrason.1 (2004) 437.Suche in Google Scholar

[31] H.Gao, L.Zhang, W.D.Nix, C.V.Thompson, E.Arzt: Acta Mater.47 (1999) 2865.10.1016/S1359-6454(99)00178-0Suche in Google Scholar

[32] C.Eberl, Fatigue of Al thin films at ultra high frequencies, University Stuttgart (2004).Suche in Google Scholar

[33] G.Gottstein: Physikalische Grundlagen der Materialkunde, Springer, Berlin (2001).10.1007/978-3-662-22296-6Suche in Google Scholar

[34] H.Landolt: Numerical data and functional relationships in science and technology, Springer-Verlag, Berlin (1967).Suche in Google Scholar

[35] A.Granato, K.Lücke: J. Appl. Phys.27 (1956) 583.10.1063/1.1722436Suche in Google Scholar

[36] E.Nadgorny, Prog. Mater. Sci.31, Pergamon Press, Oxford (1988).Suche in Google Scholar

[37] W.H.Press: Numerical recipes in Fortran77, Cambridge University Press, Cambridge (2003).Suche in Google Scholar

[38] D.L.Olmsted, L.G.HectorJr., W.A.Curtin, R.J.Clifton: Model. Simul. Mater. Sc.13 (2005) 371.10.1088/0965-0393/13/3/007Suche in Google Scholar

Received: 2011-3-3
Accepted: 2011-10-25
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110635/pdf?lang=de
Button zum nach oben scrollen