Startseite Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading

  • Domnin Gelmedin und Karl-Heinz Lang
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Materials for turbine blades experience in service a combined loading of low and high cycle fatigue at high temperatures. In order to understand the failure behaviour under these loading conditions, systematic investigations were carried out. Low cycle fatigue, high cycle fatigue and combined low and high cycle fatigue tests were realised on MAR-M247 LC at 650 °C in an air environment under total strain control. Surface damage and fracture surfaces were analysed. Under combined low and high cycle fatigue, the lifetime is reduced if the low cycle fatigue leads to a degradation of the high cycle fatigue strength caused by crack initiation and crack growth. By analysing the fracture surface, the crack growth rate under combined cycle fatigue loading could be determined and it was significantly higher than under pure low cycle fatigue loading. The accelerated crack growth mainly causes the lifetime reduction.


* Dipl.-Ing. Domnin Gelmedin, Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Campus Süd, Engelbert-Arnold-Straße 4, D-76131 Karlsruhe, Germany. Tel.: +49 721 608-46595, Fax: +49 721 608-48044, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] V.I.Trufyakov, V.S.Koval'chuk: Strength of Materials14 (1982) 1165.10.1007/BF00779928.http://dx.doi.org/10.1007/BF00779928Suche in Google Scholar

[2] T.Tanaka: Bull. J. Soc. Mech. Eng.11 (1968) 77.10.1299/jsme1958.11.77Suche in Google Scholar

[3] D.Gelmedin, K.-H.Lang: Procedia Engng., 2 (2010) 1343.10.1016/j.proeng.2010.03.146Suche in Google Scholar

[4] B.E.Powell, T.V.Duggan, R.Jeal: Int. J. Fat.4 (1982) 4.10.1016/0142-1123(82)90015-9Suche in Google Scholar

[5] B.E.Powell, T.V.Duggan: Int. J. Fat.8 (1986) 187.10.1016/0142-1123(86)90020-4Suche in Google Scholar

[6] B.E.Powell, T.V.Duggan: Int. J. Fat.9 (1987) 195.10.1016/0142-1123(87)90021-1Suche in Google Scholar

[7] B.E.Powell, M.Hawkyard, L.Grabowski: Int. J. Fat.19 (1997) 167.10.1016/S0142-1123(97)00016-9Suche in Google Scholar

[8] T.Nicholas: High Cycle Fatigue, Elsevier (2006).Suche in Google Scholar

[9] J.Ding, R.F.Hall, J.Byrne, J.Tong: Int. J. Fat.29 (2007) 1339.10.1016/j.ijfatigue.2006.10.020Suche in Google Scholar

[10] C.Schweizer, T.Seifert, B.Nieweg, P.von Hartrott, H.Riedel: Int. J. Fat.33 (2011) 194.10.1016/j.ijfatigue.2010.08.008Suche in Google Scholar

[11] J.-Y.Guedou, J.-M.Rongvaux, in: H.D. Solomon, G.R. Halford, L.R. Kaisand, B.N. Leis (Eds.) Low Cycle Fatigue, ASTM STP 942, Philadelphia (1988) 938.Suche in Google Scholar

[12] D.Gelmedin, K.-H.Lang, in: J. Lecomte-Beckers et al. (Eds.), Proc. of the 9th Liège Conf. on Mat. for Advanced Power Engng. (2010), Liège, Belgium. Forschungszentrum Jülich, Germany, ISBN 978-3-89336-685-9, 844.Suche in Google Scholar

[13] R.G.Forman, V.Shivakumar, in: J.H.Underwood, R.Chait, C.W.Smith, D.P.Wilhelm, W.A.Andrews, J.C.Newman (Eds.), Fracture Mechanics Vol. 17, ASTM STP 905, Philadelphia (1986), 59.Suche in Google Scholar

[14] ASTM Standard E647-05, ASTM International, West Conshohocken, PA (2005).Suche in Google Scholar

[15] P.Heuler, J.W.Bergmann: LCF von Turbinenrädern, FVV-Report No. 546–2, Frankfurt (1994).Suche in Google Scholar

[16] L.Kunz, P.Lukáš, R.Mintách, K.Hrbáček: Kovove Mater.44 (2006) 275.Suche in Google Scholar

[17] P.Heuler, J.W.Bergmann, M.Vormwald, in: G. Lütjering, H. Nowack (Eds.), Proc. of the 6th Int. Fatigue Congress, Berlin (1996) 1165.10.1016/B978-008042268-8/50067-8Suche in Google Scholar

[18] H.Kitagawa, S.Takahashi, Proc. of 2nd Int. Conference on Mechanical Behaviour of Materials, Boston (1976) 627.Suche in Google Scholar

[19] Y.Yamada, J.C.NewmanJr.: Engng. Fract. Mech.76 (2009) 209.10.1016/j.engfracmech.2008.09.009Suche in Google Scholar

[20] M.H.El Haddad, K.N.Topper, T.H.Smith: J. Eng. Mater. Technol.101 (1979) 42.10.1115/1.3443647Suche in Google Scholar

[21] S.Mall, T.Nicholas, T.-W.Park: Int. J. Fat.25 (2003) 1109.10.1016/S0142-1123(03)00116-6Suche in Google Scholar

[22] V.Zitounis and P.E.Irving: Int. J. Fat.29 (2007) 108.10.1016/j.ijfatigue.2006.02.048Suche in Google Scholar

[23] S.M.Russ: Int. J. Fat.27 (2005) 1628.10.1016/j.ijfatigue.2005.07.032Suche in Google Scholar

[24] G.König, E.E.Affeldt, in: K.T. Rie (Ed.), Proc. 2nd Conf. On Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier, London (1987) 673.10.1007/978-94-009-3459-7_104Suche in Google Scholar

[25] W.Wei, H.Flöge, E.E.Affeldt, Scr. Metall. et Mater.25 (1991) 1757.10.1016/0956-716X(91)90300-PSuche in Google Scholar

Received: 2011-9-8
Accepted: 2011-10-19
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110633/pdf?lang=de
Button zum nach oben scrollen