Startseite Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace

  • Samuel Bogner , Lei Hu , Simon Hollad , Weiping Hu , Günter Gottstein und Andreas Bührig-Polaczek
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The eutectic NiAl-9Mo (at.%) alloy was directionally solidified using an industrial scale Bridgman furnace and using a liquid metal cooling Bridgman furnace to produce in-situ composites of aligned Mo fibers in an NiAl matrix. In the first part of the experiment, an investment casting shell mold system, produced for NiAl alloys, was used and investigated for the NiAl-9Mo alloy in the industrial scale furnace. Due to the lower temperature gradient of ∼2.8 K mm−1, the microstructure of the samples was dendritic. In the second part of the experiment, samples with well aligned Mo fibers were produced in the laboratory Bridgman furnace using a temperature gradient of ∼11 K mm−1 and growth rates of 0.33–0.66 mm min−1.


* Dipl.-Ing. Samuel W. Bogner, Gieβerei-Institut, Intzestr. 5, D-52072 Aachen. Tel.: +49241 8097144, Fax: +49241 8092276, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] R.D.Noebe, W.S.Walston, in: M.V.Nathal, R.Darolia, C.T.Liu, P.L.Martin, D.B.Miracle, R.Wagner, M.Yamaguchi (Eds.), Structural Intermetallics 1997, The Minerals, Metals Materials Society.Suche in Google Scholar

[2] R.Darolia: JOM43 (1991) 4449.10.1007/BF03220163Suche in Google Scholar

[3] R.Bowman, A.K.Misra, I.E.Locci: Advanced High Temperature Engine Materials Program, Vol. 2, NASA (1993) 5761.Suche in Google Scholar

[4] R.R.Bowman, A.K.Misra, S.M.Arnold: Metall. Mater. Trans. A26 (1994) 615628.10.1007/BF02663910Suche in Google Scholar

[5] H.E.Cline, J.L.Walter, E.Lifshin, R.R.Russel: Metall. Trans.2 (1971) 189194.10.1007/BF02662656Suche in Google Scholar

[6] C.Y.Cui, Y.X.Chen, J.T.Guo, Y.H.Qi, H.Q.Ye: Mater. Sci. Eng. A325 (2002) 186193.10.1016/S0921-5093(01)01452-6Suche in Google Scholar

[7] X.F.Chen, D.R.Johnson, B.F.Oliver: Scr. Metal. Mater.30 (1994) 975980.10.1016/0956-716X(94)90540-1Suche in Google Scholar

[8] R.Darolia: Intermetallics8 (2000) 13211327.10.1016/S0966-9795(00)00081-9Suche in Google Scholar

[9] A.Misra, Z.L.Wu, M.T.Kush, R.Gibala: Mater. Sci. Eng. A239 (1997) 7587.10.1016/S0921-5093(97)00563-7Suche in Google Scholar

[10] A.Gali, H.Bei, E.P.George: Acta Mater.58 (2010) 421428.10.1016/j.actamat.2009.09.020Suche in Google Scholar

[11] H.Bei, E.P.George: Acta Materialia53 (2005) 6977.10.1016/j.actamat.2004.09.003Suche in Google Scholar

[12] R.I.Barabash, H.Bei, Y.F.Gao, G.E.Ice: Scr. Mater.64 (2011) 900903.10.1016/j.scriptamat.2011.01.028Suche in Google Scholar

[13] H.Bei, S.Shim, E.P.George, M.K.Miller, E.G.Herbert, G.M.Pharr: Scr. Mater.57 (2007) 397400.10.1016/j.scriptamat.2007.05.010Suche in Google Scholar

[14] P.Ferrandini, W.W.Batista, R.Caramb: J. Alloys and Comp.381 (2004) 9198.10.1016/j.jallcom.2004.02.052Suche in Google Scholar

[15] J.A.Oti, K.O.Yu, in: R.Darolia, J.J.Lewandowski, C.T.Liu (Eds.), Structural Intermetallics 1993, The Minerals, Metals Materials Society.Suche in Google Scholar

[16] M.Klaassen: PhD Thesis, Gießerei-Institut, RWTH Aachen, D 82, Shaker Verlag, Aachen (2003).Suche in Google Scholar

[17] M.Klaassen, I.Wagner, P.R.Sahm: Incast. 2001, Vol. 14, No. 3, 2832.Suche in Google Scholar

[18] Materials Science International Team MSIT®, and Korniyenko, Kostyantyn, Kublii, Vasyl, in: G. Effenberg, S. Ilyenko (Eds.), Springer Materials – The Landolt-Börnstein Database.Suche in Google Scholar

Received: 2011-5-12
Accepted: 2011-10-12
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110632/html?lang=de
Button zum nach oben scrollen