Startseite High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement

  • Matthias Hockauf , Martin Franz-Xaver Wagner , Manja Händel , Thomas Lampke , Steve Siebeck und Bernhard Wielage
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

High-strength materials on the basis of aluminum are attractive candidates for use in applications such as safety components that require high strength, high quality and integrity of various properties. In this paper, we discuss recent improvements in terms of property optimization made in the fields of (1) ultrafine-grained aluminum alloys prepared by equal-channel angular pressing, and (2) aluminum matrix composites with particle reinforcement. We discuss microstructural aspects and mechanical properties, as well as technological (processing parameters), wear and corrosion behavior. Our results highlight recent — and potential for further — improvements and for future applications of high-strength, aluminum-based materials.


* Dr.-Ing. Matthias Hockauf, Chemnitz University of Technology, Institute of Materials Science and Engineering, Erfenschlager Str. 73, 09125 Chemnitz, Germany. Tel.: ++49 (0) 371/531 35 432, Fax: ++49 (0) 371/531 835 432, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: JOM-J Min. Met. Mat. S.58 (2006) 33.10.1007/s11837-006-0213-7Suche in Google Scholar

[2] D.A.Hughes, N.Hansen: Acta Mater.45 (1997) 3871.10.1016/S1359-6454(97)00027-XSuche in Google Scholar

[3] F.B.Prinz, A.S.Argon: Acta Metall. Mater.32 (1984) 1021.10.1016/0001-6160(84)90004-XSuche in Google Scholar

[4] H.Mughrabi: Acta Metall. Mater.31 (1983) 1367.10.1016/0001-6160(83)90007-XSuche in Google Scholar

[5] P.L.Sun, P.W.Kao, C.P.Chang: Scripta Mater.51 (2004) 565.10.1016/j.scriptamat.2004.05.031Suche in Google Scholar

[6] M.Furukawa, Z.Horita, T.G.Langdon: Adv. Eng. Mater.3 (2001) 121.10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-VSuche in Google Scholar

[7] T.Sakai, H.Miura, X.Yang: Mater. Sci. Eng. A499 (2009) 2.10.1016/j.msea.2007.11.098Suche in Google Scholar

[8] C.Xu, M.Furukawa, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A398 (2005) 66.10.1016/j.msea.2005.03.083Suche in Google Scholar

[9] K.Oh-ishi, A.P.Zhilyaev, T.R.McNelley: Mater. Sci. Eng. A410–411 (2005) 183.10.1016/j.msea.2005.08.144Suche in Google Scholar

[10] V.M.Segal, A.E.Reznikov, A.E.Drobyshevskiy, V.I.Kopylov: Russ. Metall. (engl. translation) (1981) 7.Suche in Google Scholar

[11] L.W.Meyer, M.Hockauf, B.Zillmann, I.Schneider: Int. J. Mater. For., 2 (2009) 61.10.1007/S12289-009-0545-2Suche in Google Scholar

[12] Y.Iwahashi, J.T.Wang, Z.Horita, M.Nemoto, T.G.Langdon: Scripta Mater.35 (1996) 143.10.1016/1359-6462(96)00107-8Suche in Google Scholar

[13] P.L.Sun, P.W.Kao, C.P.Chang: Metall. and Mater. Trans. A35 (2004) 1359.10.1007/s11661-004-0311-5Suche in Google Scholar

[14] A.Gholinia, P.B.Prangnell, M.V.Markushev: Acta Mater.48 (2000) 1115.10.1016/S1359-6454(99)00388-2Suche in Google Scholar

[15] R.Lapovok: Mater. Sci. Forum503–504 (2006) 37.10.4028/www.scientific.net/MSF.503-504.37Suche in Google Scholar

[16] M.Hockauf, L.Meyer: J. Mater. Sci.45 (2010) 4778.10.1007/s10853-010-4595-0Suche in Google Scholar

[17] V.M.Segal: Mater. Sci. Eng. A386 (2004) 269.10.1016/j.msea.2004.07.023Suche in Google Scholar

[18] J.P.Mathieu, S.Suwas, A.Eberhardt, L.S.Tóth, P.Moll: J. Mater. Proc. Tech.173 (2006) 29.10.1016/j.jmatprotec.2005.11.007Suche in Google Scholar

[19] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Suche in Google Scholar

[20] R.Pippan, F.Wetscher, M.Hafok, A.Vorhauer, I.Sabirov: Adv. Eng. Mater.8 (2006) 1046.10.1002/adem.200600133Suche in Google Scholar

[21] V.I.Kopylov, V.N.Chuvil'deev, in: B.S.Altan (Ed.), Severe Plastic Deformation: Toward Bulk Production of Nanocrystalline Materials, Nova Science Publisher, New York (2006) 37.Suche in Google Scholar

[22] N.Q.Chinh, G.Horvath, Z.Horita, T.G.Langdon: Acta Mater.52 (2004) 3555.10.1016/j.actamat.2004.04.009Suche in Google Scholar

[23] Z.Horita, T.Fujinami, M.Nemoto, T.G.Langdon: Metall. and Mater. Trans. A31 (2000) 691.10.1007/s11661-000-0011-8Suche in Google Scholar

[24] S.Cheng, Y.H.Zhao, Y.T.Zhu, E.Ma: Acta Mater.55 (2007) 5822.10.1016/j.actamat.2007.06.043Suche in Google Scholar

[25] Y.M.Wang, E.Ma, R.Z.Valiev, Y.T.Zhu: Adv. Mater.16 (2004) 328.10.1002/adma.200305679Suche in Google Scholar

[26] J.K.Kim, H.G.Jeong, S.I.Hong, Y.S.Kim, W.J.Kim: Scripta Mater.45 (2001) 901.10.1016/S1359-6462(01)01109-5Suche in Google Scholar

[27] M.Cai, D.P.Field, G.W.Lorimer: Mater. Sci. Eng. A373 (2004) 65.10.1016/j.msea.2003.12.035Suche in Google Scholar

[28] Y.H.Zhao, X.Z.Liao, Z.Jin, R.Z.Valiev, Y.T.Zhu: Acta Mater.52 (2004) 4589.10.1016/j.actamat.2004.06.017Suche in Google Scholar

[29] J.Gubicza, I.Schiller, N.Q.Chinh, J.Illy, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A460–461 (2007) 77.10.1016/j.msea.2007.01.001Suche in Google Scholar

[30] S.Divinski, G.Wilde: Mater. Sci. Forum584–586 (2008) 1012.10.4028/www.scientific.net/MSF.584-586.1012Suche in Google Scholar

[31] M.Hockauf, L.W.Meyer, B.Zillmann, M.Hietschold, S.Schulze, L.Krüger: Mater. Sci. Eng. A503 (2009) 167.10.1016/j.msea.2008.02.051Suche in Google Scholar

[32] K.Hockauf, L.Meyer, M.Hockauf, T.Halle: J. Mater. Sci.45 (2010) 4754.10.1007/s10853-010-4544-9Suche in Google Scholar

[33] M.Hockauf, L.W.Meyer, D.Nickel, G.Alisch, T.Lampke, B.Wielage, L.Krüger: J. Mater. Sci.43 (2008) 7409.10.1007/s10853-008-2724-9Suche in Google Scholar

[34] L.W.Meyer, R.Schönherr, M.Hockauf: J. Phys. Conf. Ser. 240 (2010) 012123.10.1088/1742-6596/240/1/012123Suche in Google Scholar

[35] R.Z.Valiev, I.P.Semenova, E.Jakushina, V.V.Latysh, H.J.Rack, T.C.Lowe, J.Petruželka, L.Dluhoš, D.Hrušák, J.Sochová: Mater. Sci. Forum584–586 (2008) 49.10.4028/www.scientific.net/MSF.584-586.49Suche in Google Scholar

[36] S.Ferrasse, V.M.Segal, F.Alford, S.Strothers, J.Kardokus, S.Grabmeier, J.Evans, in: B.S.Altan (Ed.) Severe Plastic Deformation: Toward Bulk Production of Nanocrystalline Materials, Nova Science Publisher, New York (2006) 585.Suche in Google Scholar

[37] P.K.Chaudhury, B.Cherukuri, R.Srinivasan: Mater. Sci. Eng. A410–411 (2005) 316.10.1016/j.msea.2005.08.023Suche in Google Scholar

[38] P.Frint, M.Hockauf, T.Halle, G.Strehl, T.Lampke, M.F.X.Wagner: Mater. Sci. Forum667–669 (2011) 1153.10.4028/www.scientific.net/MSF.667-669.1153Suche in Google Scholar

[39] J.S.Benjamin, P.S.Gilman: Sci. Am.234 (1976) 40.10.1038/scientificamerican0576-40Suche in Google Scholar

[40] C.C.Koch: Annu. Rev. Mater. Sci.19 (1989) 121.10.1146/annurev.ms.19.080189.001005Suche in Google Scholar

[41] C.C.Koch, J.D.Whittenberger: Intermetallics4 (1996) 339.10.1016/0966-9795(96)00001-5Suche in Google Scholar

[42] C.Suryanarayana: Prog. Mater. Sci.46 (2001) 1.10.1016/S0079-6425(99)00010-9Suche in Google Scholar

[43] M.Schoenitz, T.S.Ward, E.L.Dreizin: P. Combust. Inst.30 (2005) 2071.10.1016/j.proci.2004.08.134Suche in Google Scholar

[44] W.Schatt, B.Kieback, K.-P.Wieters: Pulvermetallurgie, 2. Auflage, Springer-Verlag, Berlin (2007).10.1007/978-3-540-68112-0Suche in Google Scholar

[45] C.Suryanarayana: Mechanical alloying and milling, Marcel Dekker, New York (2004).10.1201/9780203020647Suche in Google Scholar

[46] H.Zoz, D.Ernst, R.Reichardt, H.Ren, T.Mizutani: Mater. Manuf. Process.14 (1999) 6.10.1080/10426919908914878Suche in Google Scholar

[47] D.Nestler, S.Siebeck, H.Podlesak, S.Wagner, M.Hockauf, B.Wielage, in: M.Fathi, A.Holland, F.Ansari, C.Weber (Eds.), Integrated Systems, Design and Technology, Springer-Verlag, Berlin (2011) 93.10.1007/978-3-642-17384-4_9Suche in Google Scholar

[48] B.Wielage, D.Nestler, S.Siebeck, H.Podlesak: Materialwiss. Werkst.41 (2010) 476.10.1002/mawe.201000629Suche in Google Scholar

[49] H.Podlesak, S.Siebeck, S.Mücklich, M.Hockauf, L.W.Meyer, B.Wielage, D.Weber: Materialwiss. Werkst.40 (2009) 500.10.1002/mawe.200900495Suche in Google Scholar

[50] N.Chawla, Y.L.Shen: Adv. Eng. Mater.3 (2001) 357.10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-ISuche in Google Scholar

[51] B.Bobić, S.Mitrović, M.Babić, I.Bobić: Tribol. Indust.32 (2010) 3.Suche in Google Scholar

[52] D.Nickel, G.Alisch, H.Podlesack, M.Hockauf, G.Fritsche, T.Lampke: Rev. Adv. Mater. Sci.25 (2010) 261.Suche in Google Scholar

[53] R.L.Deuis, C.Subramanian, J.M.Yellup: Wear201 (1996) 132.10.1016/S0043-1648(96)07228-6Suche in Google Scholar

[54] R.L.Deuis, C.Subramanian, J.M.Yellup: Compos. Sci. and Technol.57 (1997) 415.10.1016/S0266-3538(96)00167-4Suche in Google Scholar

Received: 2011-4-28
Accepted: 2011-10-4
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110631/pdf?lang=de
Button zum nach oben scrollen