Startseite Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation

  • Mario Schweda , Tilmann Beck und Lorenz Singheiser
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of roughness profile shape, roughness depth, bond coat creep strength and pre-oxidation on the thermal cycling damage evolution and lifetime of a plasma-sprayed ZrO2 thermal barrier coating system was investigated. A simplified model system was used where FeCrAlY substrates simulated the bond coat. Substrate creep was varied by using the oxide dispersoid strengthened alloy MA956 and the conventional material Fecralloy. Stochastic 3- and periodic 2-dimensional roughness profiles were produced by sand blasting and high speed turning. Damage evolution is significantly influenced by substrate creep with a trend to higher lifetimes for the fast creeping substrate. Pre-oxidation has no influence. Lifetimes of the periodically profiled samples are up to 100 times lower than these of stochastically profiled samples. In the case of periodically profiled samples, the highest lifetime was reached for the highest roughness depth combined with local undercuttings in the roughness profile. For stochastically profiled samples the influence of roughness depth could not be determined due to the wide lifetime scatter.


* Dr.-Ing. Mario Schweda, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany. Tel.: +492461 615096, Fax: +492461 618293, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] http://www.siemens.comSuche in Google Scholar

[2] N.S.Cheruvu, K.S.Chan, R.Viswanathan: Mater. Sci. Eng. for Energy Systems, 1–1 (March 2006) 33.10.1179/174892306X99705Suche in Google Scholar

[3] J.DeMasi–Marcin, D.K.Gupta: Surf. Coat. Technol. 68/69 (1994) 1.10.1016/0257-8972(94)90129-5Suche in Google Scholar

[4] P.Bednarz: Finite element simulation of stress evolution in thermal barrier coating systems, Dissertation RWTH Aachen (2006).Suche in Google Scholar

[5] J.RöslerM.Bäker, K.Aufzug: Acta Mater.52 (2004) 4809.10.1016/j.actamat.2004.06.046Suche in Google Scholar

[6] V.Teixeira, M.Andritschky, W.Fischer, H.P.Buchkremer, D.Stöver: J. Mater. Process. Technol.92-93 (1999) 209.10.1016/S0924-0136(99)00157-0Suche in Google Scholar

[7] A.Gil, V.Shemet, R.Vassen, M.Subanovic, J.Toscano, D.Naumenko, L.Singheiser, W.J.Quadakkers: Surf. Coat. Technol.201 (2006) 3824.10.1016/j.surfcoat.2006.07.252Suche in Google Scholar

[8] A. NusairKhan, J.Lu: Surf. Coat. Technol.201 (2007) 4653.10.1016/j.surfcoat.2006.10.022Suche in Google Scholar

[9] R.Vaßen, G.Kerkhoff, D.Stöver: Mater. Sci. Eng. A303 (2001) 100.10.1016/S0921-5093(00)01853-0Suche in Google Scholar

[10] R.Herzog, F.Schubert, L.Singheiser: J. Mater. Process. Technol.117 (2001) 3.Suche in Google Scholar

[11] F.Traeger, M.Ahrens, R.Vaßen, D.Stöver: Mater. Sci. Eng. A358 (2003) 255.10.1016/S0921-5093(03)00300-9Suche in Google Scholar

[12] D.Zhang, S.Gong, H.Xu, Z.Wu: Surf. Coat. Technol.201 (2006) 649.10.1016/j.surfcoat.2005.12.027Suche in Google Scholar

[13] H.Lau, C.Leyens, U.Schulz, C.Friedrich: Surf. Coat. Technol.165 (2003) 217.10.1016/S0257-8972(02)00726-0Suche in Google Scholar

[14] J.Chao, J.L.Gonzales–Carrasco: Mater. Sci. Eng. A230 (1997) 39.10.1016/S0921-5093(97)00029-4Suche in Google Scholar

[15] T.S.Hille, T.J.Nijdam, A.S.J.Suiker, S.Turteltaub, W.G.Sloof: Acta Mater.57 (2009) 2624.10.1016/j.actamat.2009.01.022Suche in Google Scholar

[16] T.Beck, R.Herzog, O.Trunova, M.Offermann, R.W.Steinbrech, L.Singheiser: Surf.Coat.Technol.202 (2008) 5901).10.1016/j.surfcoat.2008.06.132Suche in Google Scholar

[17] T.Beck, M.Bialas, P.Bednarz, L.Singheiser, K.Bobzin, N.Bagcivan, D.Parkot, T.Kashko, I.Petkovicacute, B.Hallstedt, S.Nemna, J.M.Schneider: Adv. Eng. Mater.12 (2010) 110.Suche in Google Scholar

[18] L.B.Freund, S.Suresh: Thin Film Materials, Cambridge University Press (2004).10.1017/CBO9780511754715Suche in Google Scholar

[19] G.C.Chang, W.Phucharoen: Surf. Coat. Technol.32 (1987) 307.10.1016/0257-8972(87)90116-2Suche in Google Scholar

Received: 2011-3-31
Accepted: 2011-10-13
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110627/pdf?lang=de
Button zum nach oben scrollen