Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
-
Christoph Linck
, Emanuel Ionescu , Benjamin Papendorf , Dagmar Galuskova , Duŝan Galusek , Pavol Ŝajgalík und Ralf Riedel
Abstract
Silicon oxycarbide-based ceramic nanocomposites (SiOC, SiZrOC and SiHfOC) were prepared by means of hot pressing techniques and their behavior upon hydrothermal corrosion at moderate temperatures (up to 250°C) was investigated. The results indicated linear corrosion behavior for all samples. The corrosion rates of the SiOC ceramic materials were found to be remarkably lower than those of silicon carbide and comparable to values reported for silicon nitride. Furthermore, SiZrOC and SiHfOC were found to show improved resistance with respect to the non-modified SiOC, due to a unique synergistic effect: whereas zirconia/hafnia act as “reinforcing” phases with respect to hydrothermal corrosion (due to their extremely low solubility in water under the testing conditions), the silicon oxycarbide matrix protects the MO2 phase from a corrosion-induced t-MO2 → m-MO2 phase transformation. Consequently, the prepared silicon oxycarbide-based materials exhibit high potential for applications which require high resistance in corrosive media at moderate temperatures.
References
[1] Y.G.Gogotsi, V.A.Lavrenko, in: Corrosion of High-Performance Ceramics, Springer Verlag, Berlin, Germany (1992).10.1007/978-3-642-77390-7Suche in Google Scholar
[2] K.G.Nickel, B.Seipel: J. Mater. Res.7 (2004) 125.10.1590/S1516-14392004000100017Suche in Google Scholar
[3] K.Hagen: J. Am. Ceram. Soc.93 (2010) 1501.10.1111/j.1551-2916.2010.03839.xSuche in Google Scholar
[4] C.A.Lewinsohn, M.Singh, C.H.HenagerJr.: Ceram. Trans.138 (2003) 201.Suche in Google Scholar
[5] P.Colombo, G.Mera, R.Riedel, GD.Soraru: J. Am. Ceram. Soc.93 (2010) 1805.Suche in Google Scholar
[6] E.Ionescu, C.Linck, C.Fasel, M.Müller, H.-J.Kleebe, R.Riedel: J. Am. Ceram. Soc.93 (2010) 241.10.1111/j.1551-2916.2009.03395.xSuche in Google Scholar
[7] E.Ionescu, B.Papendorf, H.-J.Kleebe, F.Poli, K.Müller, R.Riedel: J. Am. Ceram. Soc.93 (2010) 1774.10.1111/j.1551-2916.2009.03395.xSuche in Google Scholar
[8] E.Ionescu, B.Papendorf, H.-J.Kleebe, R.Riedel: J. Am. Ceram. Soc.93 (2010) 1783.10.1111/j.1551-2916.2009.03395.xSuche in Google Scholar
[9] R.Riedel, A.Kienzle, W.Dressler, L.Ruwisch, J.Bill, F.Aldinger: Nature382 (1996) 796.10.1038/382796a0Suche in Google Scholar
[10] Z.Wang, F.Aldinger, R.Riedel: J. Am. Ceram. Soc.84 (2001) 2179.10.1111/j.1151-2916.2001.tb00984.xSuche in Google Scholar
[11] G.Chollon, in P.Colombo, R.Riedel, G.D.Soraru, H.-J.Kleebe (Eds.) Polymer Derived Ceramics. From Nano-Structure to Applications, DEStech, Lancaster, PA, USA (2010).Suche in Google Scholar
[12] J.Rodrigues-Carvajal: Phys. B192 (1993) 55.10.1016/0921-4526(93)90108-ISuche in Google Scholar
[13] P.Karen, P.M.Woodward, J. Solid State Chem.141 (1998) 78.10.1006/jssc.1998.7918Suche in Google Scholar
[14] P.Colombo, G.Mera, R.Riedel, G.D.Soraru: J. Am. Ceram. Soc.93 (2010) 1805.Suche in Google Scholar
[15] R.Riedel, E.Ionescu (Eds.), Special Triple Issue “Preceramic Polymers”, Soft. Mater.4 (2006) 105.Suche in Google Scholar
[16] P.Greil, M.Seibold: J. Mater. Sci.27 (1992) 1053.10.1007/BF01197660Suche in Google Scholar
[17] P.Greil: J. Am. Ceram. Soc.78 (1995) 835.10.1111/j.1151-2916.1995.tb08404.xSuche in Google Scholar
[18] P.Greil: J. Eur. Ceram. Soc.18 (1998) 1905.10.1016/S0955-2219(98)00129-0Suche in Google Scholar
[19] R.Riedel, G.Passing, H.Schönfelder, R.J.Brook: Nature355 (1992) 714.10.1038/355714a0Suche in Google Scholar
[20] S. MartinezCrespiera, E.Ionescu, H.-J.Kleebe, R.Riedel: J. Eur. Ceram. Soc.31 (2011) 913.10.1016/j.jeurceramsoc.2010.11.019Suche in Google Scholar
[21] N.Janakiraman, F.Aldinger: J. Eur. Ceram. Soc.29 (2009) 163.10.1016/j.jeurceramsoc.2008.05.028Suche in Google Scholar
[22] S.Ishihara, H.Gu, J.Bill, F.Aldinger, F.Wakai: J. Am. Ceram. Soc.85 (2002) 1706.10.1111/j.1151-2916.2002.tb00339.xSuche in Google Scholar
[23] M.Esfehanian, R.Oberacker, T.Fett, M.J.Hoffmann: J. Am. Ceram. Soc.91 (2008) 3803.10.1111/j.1551-2916.2008.02730.xSuche in Google Scholar
[24] K.G.Nickel, Y.G.Gogotsi, in: R.Riedel (Ed.) Handbook of Ceramic Hard Materials, Wiley VCH, Weinheim, Germany (2000).Suche in Google Scholar
[25] T.Sato, T.Murakami, T.Endo, M.Shimada, K.Komeya, T.Kameda, M.Komatsu: J. Mater. Sci.26 (1991) 1749.10.1007/BF00543597Suche in Google Scholar
[26] T.Kraft, KG.Nickel, YG.Gogotsi: J. Mater. Sci.33 (1998) 4357.10.1023/A:1004480814477Suche in Google Scholar
[27] M.Yoshimura, J.-I.Kase, S.Somiya: J. Mater. Res.1 (1986) 100.10.1557/JMR.1986.0100Suche in Google Scholar
[28] K.Oda, T.Yoshio: J. Mater. Sci. Lett.13 (1994) 1454.10.1007/BF00419133Suche in Google Scholar
[29] H.Wakabayashi, M.Tomozawa: J. Am. Ceram. Soc.72 (1989) 1850.10.1111/j.1151-2916.1989.tb05990.xSuche in Google Scholar
[30] P.Xu, S.J.Yates, J.C.Nino: J. Composite Mater.44 (2010) 1533.10.1177/0021998309357086Suche in Google Scholar
[31] G.Perera, R.H.Doremus: J. Am. Ceram. Soc.74 (1991) 1269.10.1111/j.1151-2916.1991.tb04096.xSuche in Google Scholar
[32] K.G.Nickel, Y.G.Gogotsi: Key Eng. Mater.113 (1996) 15.10.4028/www.scientific.net/KEM.113.15Suche in Google Scholar
[33] H.Hirayama, T.Kawakubo, A.Goto, T.Kaneko: J. Am. Ceram. Soc.72 (1989) 2049.10.1111/j.1151-2916.1989.tb06029.xSuche in Google Scholar
[34] R.Harshe, C.Balan, R.Riedel: J. Eur. Ceram. Soc.24 (2004) 3471.10.1016/j.jeurceramsoc.2003.10.016Suche in Google Scholar
[35] M.Herrmann, J.Schilm, G.Michael, J.Meinhardt, R.Flegler: J. Eur. Ceram. Soc.23 (2003) 585.10.1016/S0955-2219(02)00303-5Suche in Google Scholar
[36] K.Oda, T.Yoshio, Y.Miyamoto, M.Koizumi: J. Am. Ceram. Soc.76 (1993) 1365.10.1111/j.1151-2916.1993.tb03768.xSuche in Google Scholar
[37] L.Qiu, D.A.Guzonas, DG.Webb: J. Sol. Chem.38 (2009) 857.10.1007/s10953-009-9412-5Suche in Google Scholar
[38] Y.V.Morachevsky, M.M.Piryutko: Russ. Chem. Bull.5 (1956) 917.10.1007/BF01166404Suche in Google Scholar
[39] R.O.Furnier, J.J.Rowe: Amer. Mineralogist62 (1977) 1052.Suche in Google Scholar
[40] T.Kobayashi, T.Sasaki, I.Takagi, H.Moriyama: J. Nucl. Sci. Tech.44 (2007) 90.10.3327/jnst.44.90Suche in Google Scholar
[41] D.Rai, Y.Xia, N.J.Hess, D.M.Strachan, B.P.McGrail: J. Solution Chem.30 (2001) 949.10.1023/A:1013337925441Suche in Google Scholar
[42] N.Q.Minh: J. Am. Ceram. Soc.76 (1993) 563.10.1111/j.1151-2916.1993.tb03645.xSuche in Google Scholar
[43] K.Kobayashi, H.Kuwajima, T.Masaki: Solid State Ionics3-4 (1981) 489.10.1016/0167-2738(81)90138-7Suche in Google Scholar
[44] T.Sato, T.Endo, M.Shimada: J. Mater. Sci.26 (1991) 1346.10.1007/BF00544475Suche in Google Scholar
[45] S.Lawson: J. Eur. Cer. Soc.15 (1995) 485.10.1016/0955-2219(95)00035-SSuche in Google Scholar
[46] M.Herrmann, B.Seipel, J.Schilm, K.G.Nickel, G.Michael, A.Krell: J. Eur. Ceram. Soc.25 (2005) 1805.10.1016/j.jeurceramsoc.2004.12.009Suche in Google Scholar
[47] F.Shojai, T.A.Mäntylä: J. Eur. Ceram. Soc.21 (2001) 37.10.1016/S0955-2219(00)00163-1Suche in Google Scholar
[48] F.F.Lange, G.L.Dunlop, B.I.Davis: J. Am. Ceram. Soc.69 (1986) 237.10.1111/j.1151-2916.1986.tb07415.xSuche in Google Scholar
[49] T.Sato, M.Shimada: J. Am. Ceram. Soc.68 (1985) 356.10.1111/j.1151-2916.1985.tb15239.xSuche in Google Scholar
[50] T.Sato, S.Ohtaki, M.Shimada: J. Mater. Sci.20 (1985) 1466.10.1007/BF01026344Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News