Startseite Technik Evolution of transformation plasticity during bainitic transformation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evolution of transformation plasticity during bainitic transformation

  • Hans-Gerd Lambers , Sergej Tschumak , Hans Jürgen Maier und Demircan Canadinc
Veröffentlicht/Copyright: 18. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influences of prior austenitization treatment and the state of applied stresses on the evolution of transformation plasticity strains during isothermal bainitic phase transformation and the resulting microstructures were examined. The key finding is that, upon pre-straining, the amount of transformation plasticity strain under superimposed elastic stresses is dictated by both the prior austenite grain size and the (0.01 % offset) yield strength of the supercooled austenite. Furthermore, the superimposition of internal stresses present due to pre-straining and externally applied stresses results in transformation plasticity strains similar to those obtained when a permanent stress equivalent to the 0.01 % offset yield strength of the supercooled austenite is applied. Another important result is that lower transformation plasticity strains were observed when decreasing the austenite grain size, which is accompanied by an increase in grain boundary area per volume, hindering the growth of preferred variants. Overall, the results clearly lay out the influence of austenite grain size and the particular 0.01 % offset yield strength of the supercooled austenite in limiting the transformation plasticity strains, which has to be incorporated into current models involving bainitic phase transformations.


Correspondence address, Hans-Gerd Lambers, Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, Pohlweg 47 – 49, D-33098 Paderborn, Germany, Tel.: +49 525 160 4228, Fax: +49 525 160 3854, E-mail:

References

[1] K.Steinhoff, U.Weidig, U.B.Scholtes, W.Zinn: Steel Res. Int.76 (2005) 154.Suche in Google Scholar

[2] A.Rose, L.Rademacher: Stahl und Eisen77 (1957) 409.Suche in Google Scholar

[3] H.-G.Lambers, S.Tschumak, H.J.Maier, D.Canadinc: Metall. Mater. Trans A40 (2009) 1355.10.1007/s11661-009-9827-zSuche in Google Scholar

[4] M.Umemoto, W.S.Owen: Metall. Transactions, 5 (1974) 2041.10.1007/BF02644497Suche in Google Scholar

[5] S.-J.Lee, Y.-K.Lee: Materials Science Forum475–479 (2005) 3169.10.4028/www.scientific.net/MSF.475-479.3169Suche in Google Scholar

[6] M.R.Meyerson, S.J.Rosenberg: Trans. ASM46 (1954) 1225.Suche in Google Scholar

[7] A.Garcia-Junceda, C.Capdevila, F.G.Caballero, C.Garcia de Andres: Scripta Mater.58 (2008) 134.10.1016/j.scriptamat.2007.09.017Suche in Google Scholar

[8] H.-Y.Yang, H.K.D.H.Bhadeshia: Scripta Mater.60 (2009) 493.10.1016/j.scriptamat.2008.11.043Suche in Google Scholar

[9] G.I.Rees, H.K.D.H.Bhadeshia: Mater. Sci. Technol.8 (1992) 985.10.1179/026708392790409842Suche in Google Scholar

[10] P.J.Jacques: J. Phys. IV, 112 (2003) 297.10.1051/jp4:2003887Suche in Google Scholar

[11] A.Matuzaki, H.K.D.H.Bhadeshia: Mater. Sci. Technol.15 (1999) 518.10.1179/026708399101506210Suche in Google Scholar

[12] H.Bungardt, H.Preisendanz, H.Brandis: Archiv für das Eisenhüttenwesen32 (1961) 261.Suche in Google Scholar

[13] H.-G.Lambers, S.Tschumak, H.J.Maier, D.Canadinc: Mater Sci. Eng. A527 (2010) 625.10.1016/j.msea.2009.08.038Suche in Google Scholar

[14] H.-G.Lambers, S.Tschumak, H.J.Maier: Int. J. Micr. Mater. Prop.5 (2010) 328.Suche in Google Scholar

[15] U.Ahrens, G.Besserdich, H.J.Maier: HTM57 (2002) 99.Suche in Google Scholar

[16] A.Matsuzaki, H.K.D.H.Bhadeshia, H.Harada: Acta Metall. Mater.42 (1994) 1081.10.1016/0956-7151(94)90125-2Suche in Google Scholar

[17] P.H.Shipway, H.K.D.H.Bhadeshia: Mater. Sci. Eng. A201 (1995) 143.10.1016/0921-5093(95)09769-4Suche in Google Scholar

[18] T.J.Su, M.Veaux, E.Aeby-Gautier, S.Denis, V.Brien, P.Archambault: J. Phys. IV112 (2003) 293.10.1051/jp4:2003886Suche in Google Scholar

[19] U.Ahrens, H.J.Maier, A.E.L.M.Maksoud: J. Phys. IV120 (2004) 615.Suche in Google Scholar

[20] J.R.Patel, M.Cohen: Acta Metall., 1 (1953) 531.10.1016/0001-6160(53)90083-2Suche in Google Scholar

[21] H.K.D.H.Bhadeshi, in: H.J.McQueen, E.V.Konopleva, N.D.Ryan (Eds.), Hot Workability of Steels and Light Alloys-Composites, Canadian Institute of Mining, Minearals and Petroleum, Montreal, Canada (1996) 543.Suche in Google Scholar

[22] R.H.Larn, J.R.Yang: Mater. Sci. Eng. A278 (2000) 278.10.1016/S0921-5093(99)00597-3Suche in Google Scholar

[23] U.Ahrens, G.Besserdich, H.J.Maier: HTM55 (2000) 329.Suche in Google Scholar

[24] L.Taleb, S.Petit-Grostabussiat: J. Phys. IV12 (2002) Pr11-187.10.1051/jp4:20020492Suche in Google Scholar

[25] S.Grostabussiat, L.Taleb, J.F.Jullien, F.Sidoroff: J. Phys. IV11 (2001) Pr4-173.10.1051/jp4:2001422Suche in Google Scholar

[26] J.-C.Videau, G.Cailletaud, A.Pineau: J. Phys. IV6 (1996) C1465.10.1051/jp4:1996145Suche in Google Scholar

[27] G.W.Greenwood, R.H.Johnson: Proc. Roy. Soc. London. Series A283 (1965) 403.10.1098/rspa.1965.0029Suche in Google Scholar

[28] C.L.Magee: Transformation kinetics, microplasticity and aging of martensite in Fe-31Ni, Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, USA, 1966.Suche in Google Scholar

[29] M.Dalgic, A.Irretier, H.-W.Zoch, G.Löwisch: Int. J. Micro. Mater. Prop.3 (2008) 49.Suche in Google Scholar

[30] F.Marketz, F.D.Fischer, K.Tanaka: J. Phys. IV6 (1996) C1445.10.1051/jp4:1996143Suche in Google Scholar

[31] L.Taleb, F.A.Sidoroff: Int. J. Plasticity19 (2003) 1821.10.1016/S0749-6419(03)00020-2Suche in Google Scholar

[32] L.Taleb, N.Cavallo, F.Waeckel: Int. J. Plasticity17 (2001) 1.10.1016/S0749-6419(99)00090-XSuche in Google Scholar

[33] S.Kundu, K.Hase, H.K.D.H.Bhadeshia: Proc. Roy. Soc. A463 (2007) 2309.10.1098/rspa.2007.1881Suche in Google Scholar

[34] M.Veaux, J.C.Louin, J.P.Houin, S.Denis, P.Archambault: J. Phys. IV11 (2001) Pr4-181.10.1051/jp4:2001423Suche in Google Scholar

[35] A.A.Shirzadi, H.Abreu, L.Pocock, D.Klobcar, P.J.Withers, H.K.D.H.Bhadeshia: Int. J. Mat. Res.100 (2009) 40.10.3139/146.101789Suche in Google Scholar

[36] Atlas zur Wärmebehandlung der Stähle, Verlag Stahleisen, Düsseldorf1961.Suche in Google Scholar

[37] German Standard DIN EN 10002_5, Standard for high temperature tensile tests.Suche in Google Scholar

[38] H.K.D.H.Bhadeshia: Bainite in steels, 2nd edition. Institute of Materials, London, 2001.Suche in Google Scholar

[39] H.-G.Lambers: Unpublished data.Suche in Google Scholar

[40] S.Chatterjee, H.-S.Wang, J.R.Yang, H.K.D.H.Bhadeshia: Mat. Sci. Technology22 (2006) 641.10.1179/174328406X86128Suche in Google Scholar

[41] U.Ahrens: Beanspruchungsabhängiges Umwandlungsverhalten und Umwandlungsplastizität niedrig legierter Stähle mit unterschiedlich hohen Kohlenstoffgehalten, Dissertation, Paderborn, 2003.Suche in Google Scholar

[42] M.Dalgic, A.Irretier, H.-W.Zoch: HTM62 (2007) 179.Suche in Google Scholar

[43] P.S.Bate, W.B.Hutchinson: J. Appl. Cryst.41 (2008) 210.10.1107/S0021889807055458Suche in Google Scholar

Received: 2010-10-28
Accepted: 2011-7-1
Published Online: 2013-05-18
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr.-Ing. Heinrich Wollenberger — 80 years
  5. Original Contributions
  6. Atom probe tomography: from physical metallurgy towards microelectronics
  7. Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation
  8. TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steel
  9. Order – disorder transformation in Ni – V alloys under electron irradiation
  10. Materials issues of the SINQ high-power spallation target
  11. The origin and development of the P{011}<111> orientation during recrystallization of particle-containing alloys
  12. Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel
  13. Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures
  14. The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME21
  15. Analysing SANS data to determine magnetisation reversal processes in composite perpendicular magnetic recording media using TEM images
  16. Dislocationless sliding in a polycluster glass
  17. Evolution of transformation plasticity during bainitic transformation
  18. Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments
  19. Synthesis of carbon nanotubes by fine Ni particles in Ni3Al foam
  20. Fabrication of dielectric thin films by sputtering deposition at different pressures with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target
  21. DGM News
  22. DGM News
Heruntergeladen am 17.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.110558/html?lang=de
Button zum nach oben scrollen