Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide
-
Yuren Wen
, Yong Liu , Donghua Liu , Bei Tang and C. T. Liu
Abstract
Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructual evolution of ferritic steel powder mixed with TiHx, YH2 and Fe2O3 in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process.
References
[1] G.R.Odette, M.J.Alinger, B.D.Wirth: Annu. Rev. Mater. Res.38 (2008) 471.10.1146/annurev.matsci.38.060407.130315Search in Google Scholar
[2] M.S.El-Genk, J.-M.Tournier: J. Nucl. Mater.340 (2005) 93.10.1016/j.jnucmat.2004.10.118Search in Google Scholar
[3] K.L.Murty, I.Charit: J. Nucl. Mater.383 (2008) 189.10.1016/j.jnucmat.2008.08.044Search in Google Scholar
[4] C.Cayron, E.Rath, I.Chu, S.Launois: J. Nucl. Mater.335 (2004) 83.10.1016/j.jnucmat.2004.06.010Search in Google Scholar
[5] R.L.Klueh, P.J.Maziasz, I.S.Kim, L.Heatherly, D.T.Hoelzer, N.Hashimoto, E.A.Kenik, K.Miyahara: J. Nucl. Mater.307 (2002) 773.10.1016/S0022-3115(02)01046-2Search in Google Scholar
[6] R.L.Klueh, J.P.Shingledecker, R.W.Swindeman, D.T.Hoelzer: J. Nucl. Mater.341 (2005) 103.10.1016/j.jnucmat.2005.01.017Search in Google Scholar
[7] M.K.Miller, E.A.Kenik, K.F.Russell, L.Heatherly, D.T.Hoelzer, P.J.Maziasz: Mater. Sci. Eng. A353 (2003) 140.10.1016/S0921-5093(02)00680-9Search in Google Scholar
[8] M.K.Miller, D.T.Hoelzer, E.A.Kenik, K.F.Russell: J. Nucl. Mater.329–333 (2004) 338.10.1016/j.jnucmat.2004.04.085Search in Google Scholar
[9] M.K.Miller, D.T.Hoelzer, E.A.Kenik, K.F.Russell: Intermetallics13 (2005) 387.10.1016/j.intermet.2004.07.036Search in Google Scholar
[10] M.K.Miller, K.F.Russell, D.T.Hoelzer: J. Nucl. Mater.351 (2006) 261.10.1016/j.jnucmat.2006.02.004Search in Google Scholar
[11] M.J.Alinger, G.R.Odette, D.T.Hoelzer: Acta Mater.57 (2009) 392.10.1016/j.actamat.2008.09.025Search in Google Scholar
[12] I.S.Kim, B.Y.Choi, C.Y.Kang, T.Okuda, P.J.Maziasz, K.Miyahara: ISIJ International43 (2003) 1640.10.2355/isijinternational.43.1640Search in Google Scholar
[13] V.de Castro, T.Leguey, M.A.Monge, A.Munoz, R.Pareja, D.R.Amador, J.M.Torralba, M.Victoria: J. Nucl. Mater.322 (2003) 228.10.1016/S0022-3115(03)00330-1Search in Google Scholar
[14] R.Schaublin, A.Ramar, N.Baluc, V.de Castro, M.A.Monge, T.Leguey, N.Schmid, C.Bonjour: J. Nucl. Mater.351 (2006) 247.10.1016/j.jnucmat.2006.02.005Search in Google Scholar
[15] N.Y.Iwata, A.Kimura, M.Fujiwara, N.Kawashima: J. Nucl. Mater.367 (2007) 191.10.1016/j.jnucmat.2007.03.147Search in Google Scholar
[16] T.Hayashi, P.M.Sarosi, J.H.Schneibel, M.J.Mills: Acta Mater.56 (2008) 1407.10.1016/j.actamat.2007.11.038Search in Google Scholar
[17] C.Suryanarayana: Prog. Mater. Sci.46 (2001) 1.10.1016/S0079-6425(99)00010-9Search in Google Scholar
[18] S.S.Razavi Tousi, R.Yazdani Rad, E.Salahi, I.Mobasherpour, M.Razavi: Powder Technology192 (2009) 346.10.1016/j.powtec.2009.01.016Search in Google Scholar
[19] P.S.Gilman, J.S.Benjamin: Annu. Rev. Mater. Sci.13 (1983) 279.10.1146/annurev.ms.13.080183.001431Search in Google Scholar
[20] M.P.Phaniraj, D.I.Kim, J.H.Shim, Y.W.Cho: Acta Mater.57 (2009) 1856.10.1016/j.actamat.2008.12.026Search in Google Scholar
[21] V.A.Shabashov, A.V.Litvinov, A.G.Mukoseev, V.V.Sagaradze, D.V.Desyatkov, V.P.Pilyugin, I.V.Sagaradze, N.F.Vildanova: Mater. Sci. Eng. A361 (2003) 136.10.1016/S0921-5093(03)00493-3Search in Google Scholar
[22] V.A.Shabashov, V.V.Sagaradze, A.V.Litvinov, A.G.Mukoseev, N.F.Vildanova: Mater. Sci. Eng. A392 (2005) 62.10.1016/j.msea.2004.11.006Search in Google Scholar
[23] V.V.Sagaradze, A.V.Litvinov, V.A.Shabashov, N.F.Vildanova, A.G.Mukoseev, K.A.Kozlov: The Physics of Metals and Metallography101 (2006) 566.10.1134/S0031918X06060081Search in Google Scholar
[24] C.Capdevila, H.K.D.H.Bhadeshia: Adv. Eng. Mater.3 (2001) 647.10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4Search in Google Scholar
[25] J.Fan, M.Lu, H.Cheng, J.Tian, B.Huang: International Journal of Refractory Metals and Hard Materials27 (2009) 78.10.1016/j.ijrmhm.2008.03.006Search in Google Scholar
[26] V.Bhosle, E.G.BaburajM.Miranova, K.Salama: Mater. Sci. Eng. A356 (2003) 190.10.1016/S0921-5093(03)00117-5Search in Google Scholar
[27] S.Ohtsuka, S.Ukai, M.Fujiwara, T.Kaito, T.Narita: J. Nucl. Mater.329 (2004) 372.10.1016/j.jnucmat.2004.04.043Search in Google Scholar
[28] S.Ohtsuka, S.Ukai, M.Fujiwara, T.Kaito, T.Narita: Journal of Physics and Chemistry of Solids66 (2005) 571.10.1016/j.jpcs.2004.06.033Search in Google Scholar
[29] I.Lucks, P.Lamparter, E.J.Mittemeijer: Acta Mater.49 (2001) 2419.10.1016/S1359-6454(01)00154-9Search in Google Scholar
[30] T.B.Massalski, J.L.Murry, L.H.Bennett, H.Baker: Binary Alloy Phase Diagram, ASM International, Metals Park, OH (1987).Search in Google Scholar
[31] H.Masuda, K.Higashitani, H.Yoshida: Powder Technology Handbook (3rd Edition), CRC press, Boca Raton, FL (2006).Search in Google Scholar
[32] H.Sakasegawa, S.Ohtsuka, S.Ukai, H.Tanigawa, M.Fujiwara, H.Ogiwara, A.Kohyama: J. Nucl. Mater.367 (2007) 185.10.1016/j.jnucmat.2007.03.148Search in Google Scholar
[33] H.H.Tian, M.Atzmon: Acta Mater.47 (1999) 1255.10.1016/S1359-6454(99)00002-6Search in Google Scholar
[34] C.L.Fu, MajaKrcmar, G.S.Painter, Xing-QiuChen: Phys. Rev. Lett.99 (2007) 225502.10.1103/PhysRevLett.99.225502Search in Google Scholar PubMed
[35] Y.Jiang, J.R.Smith, G.R.Odette: Phys. Rev. B79 (2009) 064103.10.1103/PhysRevB.79.064103Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Feature
- Re-evaluation of activities of magnesium and zinc components in the magnesium—zinc binary system from very low to high temperature
- Original Contributions
- Phase equilibria studies in alumina-containing high zinc fayalite slags with CaO/SiO2 = 0.55 Part 1
- Influence of oxygen partial pressure on the growth of Al-doped zinc oxide films by reactive MF magnetron sputtering
- Discussion on the computational algorithms of stress inside nano-scale solid material
- Phase behavior of Ni- and Co-doped SnO2 via reactive sintering and solution annealing
- Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide
- Texture and mechanical properties of strip cast and hot rolled magnesium AZ31
- Development of highly cube textured nickel superconductor substrate tapes by Accumulative Roll Bonding (ARB)
- Temperature dependence of rapidly thermally annealed Ba0.6Sr0.4TiO3 thin film fabricated on platinized Si substrate
- Template-free hydrothermal synthesis of tubular ZnO clusters and rods
- Preparation of electrospun titania nanofibers
- Banded structures in dual-phase steels – A novel characterization method
- Hot rolling of binary Ti–Nb alloys Part II: mechanical properties anisotropy
- Microstructual evolution of AZ80 magnesium alloy during multi-directional compression deformation at elevated temperature
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Feature
- Re-evaluation of activities of magnesium and zinc components in the magnesium—zinc binary system from very low to high temperature
- Original Contributions
- Phase equilibria studies in alumina-containing high zinc fayalite slags with CaO/SiO2 = 0.55 Part 1
- Influence of oxygen partial pressure on the growth of Al-doped zinc oxide films by reactive MF magnetron sputtering
- Discussion on the computational algorithms of stress inside nano-scale solid material
- Phase behavior of Ni- and Co-doped SnO2 via reactive sintering and solution annealing
- Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide
- Texture and mechanical properties of strip cast and hot rolled magnesium AZ31
- Development of highly cube textured nickel superconductor substrate tapes by Accumulative Roll Bonding (ARB)
- Temperature dependence of rapidly thermally annealed Ba0.6Sr0.4TiO3 thin film fabricated on platinized Si substrate
- Template-free hydrothermal synthesis of tubular ZnO clusters and rods
- Preparation of electrospun titania nanofibers
- Banded structures in dual-phase steels – A novel characterization method
- Hot rolling of binary Ti–Nb alloys Part II: mechanical properties anisotropy
- Microstructual evolution of AZ80 magnesium alloy during multi-directional compression deformation at elevated temperature
- DGM News
- DGM News