Home Technology Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide
Article
Licensed
Unlicensed Requires Authentication

Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

  • Yuren Wen , Yong Liu , Donghua Liu , Bei Tang and C. T. Liu
Published/Copyright: June 11, 2013

Abstract

Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructual evolution of ferritic steel powder mixed with TiHx, YH2 and Fe2O3 in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process.


* Correspondence address Yong Liu, Professor, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China, Tel.: +86 731 8883 6939, Fax: +86 731 8871 0855, E-mail:

References

[1] G.R.Odette, M.J.Alinger, B.D.Wirth: Annu. Rev. Mater. Res.38 (2008) 471.10.1146/annurev.matsci.38.060407.130315Search in Google Scholar

[2] M.S.El-Genk, J.-M.Tournier: J. Nucl. Mater.340 (2005) 93.10.1016/j.jnucmat.2004.10.118Search in Google Scholar

[3] K.L.Murty, I.Charit: J. Nucl. Mater.383 (2008) 189.10.1016/j.jnucmat.2008.08.044Search in Google Scholar

[4] C.Cayron, E.Rath, I.Chu, S.Launois: J. Nucl. Mater.335 (2004) 83.10.1016/j.jnucmat.2004.06.010Search in Google Scholar

[5] R.L.Klueh, P.J.Maziasz, I.S.Kim, L.Heatherly, D.T.Hoelzer, N.Hashimoto, E.A.Kenik, K.Miyahara: J. Nucl. Mater.307 (2002) 773.10.1016/S0022-3115(02)01046-2Search in Google Scholar

[6] R.L.Klueh, J.P.Shingledecker, R.W.Swindeman, D.T.Hoelzer: J. Nucl. Mater.341 (2005) 103.10.1016/j.jnucmat.2005.01.017Search in Google Scholar

[7] M.K.Miller, E.A.Kenik, K.F.Russell, L.Heatherly, D.T.Hoelzer, P.J.Maziasz: Mater. Sci. Eng. A353 (2003) 140.10.1016/S0921-5093(02)00680-9Search in Google Scholar

[8] M.K.Miller, D.T.Hoelzer, E.A.Kenik, K.F.Russell: J. Nucl. Mater.329–333 (2004) 338.10.1016/j.jnucmat.2004.04.085Search in Google Scholar

[9] M.K.Miller, D.T.Hoelzer, E.A.Kenik, K.F.Russell: Intermetallics13 (2005) 387.10.1016/j.intermet.2004.07.036Search in Google Scholar

[10] M.K.Miller, K.F.Russell, D.T.Hoelzer: J. Nucl. Mater.351 (2006) 261.10.1016/j.jnucmat.2006.02.004Search in Google Scholar

[11] M.J.Alinger, G.R.Odette, D.T.Hoelzer: Acta Mater.57 (2009) 392.10.1016/j.actamat.2008.09.025Search in Google Scholar

[12] I.S.Kim, B.Y.Choi, C.Y.Kang, T.Okuda, P.J.Maziasz, K.Miyahara: ISIJ International43 (2003) 1640.10.2355/isijinternational.43.1640Search in Google Scholar

[13] V.de Castro, T.Leguey, M.A.Monge, A.Munoz, R.Pareja, D.R.Amador, J.M.Torralba, M.Victoria: J. Nucl. Mater.322 (2003) 228.10.1016/S0022-3115(03)00330-1Search in Google Scholar

[14] R.Schaublin, A.Ramar, N.Baluc, V.de Castro, M.A.Monge, T.Leguey, N.Schmid, C.Bonjour: J. Nucl. Mater.351 (2006) 247.10.1016/j.jnucmat.2006.02.005Search in Google Scholar

[15] N.Y.Iwata, A.Kimura, M.Fujiwara, N.Kawashima: J. Nucl. Mater.367 (2007) 191.10.1016/j.jnucmat.2007.03.147Search in Google Scholar

[16] T.Hayashi, P.M.Sarosi, J.H.Schneibel, M.J.Mills: Acta Mater.56 (2008) 1407.10.1016/j.actamat.2007.11.038Search in Google Scholar

[17] C.Suryanarayana: Prog. Mater. Sci.46 (2001) 1.10.1016/S0079-6425(99)00010-9Search in Google Scholar

[18] S.S.Razavi Tousi, R.Yazdani Rad, E.Salahi, I.Mobasherpour, M.Razavi: Powder Technology192 (2009) 346.10.1016/j.powtec.2009.01.016Search in Google Scholar

[19] P.S.Gilman, J.S.Benjamin: Annu. Rev. Mater. Sci.13 (1983) 279.10.1146/annurev.ms.13.080183.001431Search in Google Scholar

[20] M.P.Phaniraj, D.I.Kim, J.H.Shim, Y.W.Cho: Acta Mater.57 (2009) 1856.10.1016/j.actamat.2008.12.026Search in Google Scholar

[21] V.A.Shabashov, A.V.Litvinov, A.G.Mukoseev, V.V.Sagaradze, D.V.Desyatkov, V.P.Pilyugin, I.V.Sagaradze, N.F.Vildanova: Mater. Sci. Eng. A361 (2003) 136.10.1016/S0921-5093(03)00493-3Search in Google Scholar

[22] V.A.Shabashov, V.V.Sagaradze, A.V.Litvinov, A.G.Mukoseev, N.F.Vildanova: Mater. Sci. Eng. A392 (2005) 62.10.1016/j.msea.2004.11.006Search in Google Scholar

[23] V.V.Sagaradze, A.V.Litvinov, V.A.Shabashov, N.F.Vildanova, A.G.Mukoseev, K.A.Kozlov: The Physics of Metals and Metallography101 (2006) 566.10.1134/S0031918X06060081Search in Google Scholar

[24] C.Capdevila, H.K.D.H.Bhadeshia: Adv. Eng. Mater.3 (2001) 647.10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4Search in Google Scholar

[25] J.Fan, M.Lu, H.Cheng, J.Tian, B.Huang: International Journal of Refractory Metals and Hard Materials27 (2009) 78.10.1016/j.ijrmhm.2008.03.006Search in Google Scholar

[26] V.Bhosle, E.G.BaburajM.Miranova, K.Salama: Mater. Sci. Eng. A356 (2003) 190.10.1016/S0921-5093(03)00117-5Search in Google Scholar

[27] S.Ohtsuka, S.Ukai, M.Fujiwara, T.Kaito, T.Narita: J. Nucl. Mater.329 (2004) 372.10.1016/j.jnucmat.2004.04.043Search in Google Scholar

[28] S.Ohtsuka, S.Ukai, M.Fujiwara, T.Kaito, T.Narita: Journal of Physics and Chemistry of Solids66 (2005) 571.10.1016/j.jpcs.2004.06.033Search in Google Scholar

[29] I.Lucks, P.Lamparter, E.J.Mittemeijer: Acta Mater.49 (2001) 2419.10.1016/S1359-6454(01)00154-9Search in Google Scholar

[30] T.B.Massalski, J.L.Murry, L.H.Bennett, H.Baker: Binary Alloy Phase Diagram, ASM International, Metals Park, OH (1987).Search in Google Scholar

[31] H.Masuda, K.Higashitani, H.Yoshida: Powder Technology Handbook (3rd Edition), CRC press, Boca Raton, FL (2006).Search in Google Scholar

[32] H.Sakasegawa, S.Ohtsuka, S.Ukai, H.Tanigawa, M.Fujiwara, H.Ogiwara, A.Kohyama: J. Nucl. Mater.367 (2007) 185.10.1016/j.jnucmat.2007.03.148Search in Google Scholar

[33] H.H.Tian, M.Atzmon: Acta Mater.47 (1999) 1255.10.1016/S1359-6454(99)00002-6Search in Google Scholar

[34] C.L.Fu, MajaKrcmar, G.S.Painter, Xing-QiuChen: Phys. Rev. Lett.99 (2007) 225502.10.1103/PhysRevLett.99.225502Search in Google Scholar PubMed

[35] Y.Jiang, J.R.Smith, G.R.Odette: Phys. Rev. B79 (2009) 064103.10.1103/PhysRevB.79.064103Search in Google Scholar

Received: 2010-1-28
Accepted: 2010-11-17
Published Online: 2013-06-11
Published in Print: 2011-02-01

© 2011, Carl Hanser Verlag, München

Downloaded on 19.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110462/html
Scroll to top button