Home Multiscale simulations on the grain growth process in nanostructured materials
Article
Licensed
Unlicensed Requires Authentication

Multiscale simulations on the grain growth process in nanostructured materials

Paper presented at the 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
  • Reza Darvishi Kamachali , Jun Hua , Ingo Steinbach and Alexander Hartmaier
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

In this work, multi-phase field and molecular dynamics simulations have been used to investigate nanoscale grain growth mechanisms. Based on experimental observations, the combination of grain boundary expansion and vacancy diffusion has been considered in the multi-phase field model. The atomistic mechanism of boundary movement and the free volume redistribution during the growth process have been investigated using molecular dynamics simulations. According to the multi-phase field results, linear grain growth in nanostructured materials at low temperature can be explained by vacancy diffusion in the stress field around the grain boundaries. Molecular dynamics simulations confirm the observation of linear grain growth for nanometresized grains. The activation energy of grain boundary motion in this regime has been determined to be of the order of onetenth of the self-diffusion activation energy, which is consistent with experimental data. Based on the simulation results, the transition from linear to normal grain growth is discussed in detail and a criterion for this transition is proposed.

References

[1] K. S.Kumar, H. V.Swygenhoven, S.Suresh: Acta Mater.51 (2003) 5743. 10.1016/j.actamat.2003.08.032Search in Google Scholar

[2] B. Q.Han, E. J.Lavernia, F. A.Mohamed: Rev. Adv. Mater. Sci.9 (2005) 1. 10.4028/www.scientific.net/AMR.9.1Search in Google Scholar

[3] D.Wolf, V.Yamakov, S. R.Phillpot, A.Mukherjee, H.Gleiter: Acta Mater.53 (2005) 1. 10.1016/j.actamat.2004.08.045Search in Google Scholar

[4] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar

[5] T. R.Malow, C. C.Koch: Acta Mater.45 (1997) 2177.10.1016/S1359-6454(96)00300-XSearch in Google Scholar

[6] J. H.Driver: Scripta Mater.51 (2004) 819.10.1016/j.scriptamat.2004.05.014Search in Google Scholar

[7] X.Song, K.Yang, J.Zhang: J. Nanosci. Nanotech.5 (2005) 2155.; 10.1166/jnn.2005.412Search in Google Scholar PubMed

[8] M.Ames, J.Markmann, R.Karos, A.Michels, A.Tschope, R.Birringer: Acta Mater.56 (2008) 4255.10.1016/j.actamat.2008.04.051Search in Google Scholar

[9] I. A.Ovid'ko: Phil. Mag. Let.83 (2003) 611.10.1080/09500830310001593463Search in Google Scholar

[10] F.Ebrahimi, H.Li: Scripta Mater.55 (2006) 263.10.1016/j.scriptamat.2006.03.053Search in Google Scholar

[11] A. J.Haslam, D.Moldovan, S. R.Phillpot, D.Wolf, H.Gleiter: Comp. Mater. Sci.23 (2002) 15.10.1016/S0927-0256(01)00218-XSearch in Google Scholar

[12] M.Upmanyu, D. J.Srolovitz, L. S.Shvindlerman, G.Gottstein: Acta Mater.50 (2002) 1405. 10.1016/S1359-6454(01)00446-3Search in Google Scholar

[13] Y.Estrin, G.Gottstein, L. S.Shvindlerman: Scripta Mater.41 (1999) 385. 10.1016/S1359-6462(99)00167-0Search in Google Scholar

[14] M.Upmanyu, D. J.Srolovitz, L. S.Shvindlerman, G.Gottstein: Intf. Sci.6 (1998) 287.Search in Google Scholar

[15] I.Steinbach, X.Song, A.Hartmaier: Phil. Mag.90 (2010) 485.10.1080/14786430903074763Search in Google Scholar

[16] I.Steinbach: Mod. Sim. Mater. Sci. Eng.17 (2009) 073001.10.1088/0965-0393/17/7/073001Search in Google Scholar

[17] I.Steinbach, M.Apel: Phys. D217 (2006) 153.10.1016/j.physd.2006.04.001Search in Google Scholar

[18] Y.Mishin, M. J.Mehl, D. A.Papaconstantopoulos, A. F.Voter, J. D.Kress: Phys. Rev. B63 (2001) 224106.10.1103/PhysRevB.63.224106Search in Google Scholar

[19] E.Bitzek, P.Koskinen, F.Géhler, M.Moseler, P.Gumbsch: Phys. Rev. Let.97 (2006) 170201. ; 10.1103/PhysRevLett.97.170201Search in Google Scholar PubMed

[20] J.Stadler, R.Mikulla, H. R.Trebin: Int. J. Mod. Phys. C8 (1997) 1131. 10.1142/S0129183197000990Search in Google Scholar

[21] J.Li: Mod. Sim. Eng. (2003) 173.10.1088/0965-0393/11/2/305Search in Google Scholar

[22] D.Farkas, S.Mohanty, J.Monk: Phys. Rev. Let.98 (2007) 165502.; 10.1103/PhysRevLett.98.165502Search in Google Scholar PubMed

[23] H. J.Frost, M. F.Ashby, Deformation-mechanismMaps: the plasticity and creep of metals and ceramics, Franklin Book Company (1982).Search in Google Scholar

[24] M.Chauhan, F. A.Mohamed: Mater. Sci. Eng. A427 (2006) 7.10.1016/j.msea.2005.10.039Search in Google Scholar

[25] G. J.Ackland, A. P.Jones: Phys. Rev. B73 (2006) 054104.10.1103/PhysRevB.73.054104Search in Google Scholar

[26] Y.Estrin, G.Gottstein, E.Rabkin, L. S.Shvindlerman: Scripta Mater.43 (2000) 141.10.1016/S1359-6462(00)00383-3Search in Google Scholar

[27] Y.Estrin, G.Gottstein, L. S.Shvindlerman: Acta Mater.47 (1999) 3541. 10.1016/S1359-6454(99)00235-9Search in Google Scholar

[28] C. E.Krill, L.Helfen, D.Michels, H.Natter, A.Fitch, O.Masson, R.Birringer: Phys. Rev. Let.86 (2001) 842. ; 10.1103/PhysRevLett.86.842Search in Google Scholar PubMed

[29] Y.Estrin, G.Gottstein, E.Rabkin, L. S.Shvindlerman: Acta Mater.49 (2001) 673. 10.1016/S1359-6454(00)00344-XSearch in Google Scholar

[30] J.Wang, Y.Iwahashi, Z.Horita, M.Furukawa, M.Nemoto, R. Z.Valiev, T. G.Langdon: Acta Mater.44 (1996) 2973.10.1016/1359-6454(95)00395-9Search in Google Scholar

[31] J.Lian, R. Z.Valiev, B.Baudelet: Acta Met.43 (1995) 4165.10.1016/0956-7151(95)00087-CSearch in Google Scholar

[32] X.Song, J.Zhang, L.Li, K.Yang, G.Liu: Acta Mater.54 (2006) 5541. 10.1016/j.actamat.2006.07.040Search in Google Scholar

Received: 2010-2-10
Accepted: 2010-5-7
Published Online: 2013-06-11
Published in Print: 2010-11-01

© 2010, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110419/pdf
Scroll to top button