Thermodynamic re-modeling of the Co–Gd system
-
Wei Wang
, Cuiping Guo , Changrong Li und Zhenmin Du
Abstract
The Co–Gd system was re-assessed using the CALPHAD technique. The solution phases (liquid, body-centered cubic, face-centered cubic and hexagonal close-packed) were described by the substitutional solution model. The temperature dependence of the interaction parameters of the liquid phase was separately expressed by the linear function and Kaptay equation. The intermetallic compounds Co17Gd2 and Co5Gd, which have the same CaCu5-type structure, were treated as one phase and described by a three-sublattice model (Co2, Gd)(Co2, Gd)2Co15, with Co2 and Gd mixing on the first and second sublattices and the third sublattice occupied by Co. The other compounds (Co7Gd2, Co3 Gd, Co2Gd, Co3Gd4 and CoGd3) were treated as stoichiometric compounds. Two sets of self-consistent thermodynamic parameters of the Co–Gd system were obtained.
References
[1] K. H. J.Buschow: Rep. Prog. Phys.40 (1977) 1179.10.1088/0034-4885/40/10/002Suche in Google Scholar
[2] K. H. J.Buschow: Mat. Res. Bull.19 (1984) 935.10.1016/0025-5408(84)90056-4Suche in Google Scholar
[3] K. H. J.Buschow: J. Less-Common Met.31 (1972) 359.10.1016/0022-5088(73)90029-5Suche in Google Scholar
[4] Z. G.Zhao, F. R.de Boer, K. H. J.Buschow: J. Alloys Compd.278 (1998) 69. 10.1016/S0925-8388(98)00578-7Suche in Google Scholar
[5] F.Canepa, M.Napoletano, P.Manfrinetti, A.Palenzona, S.Cirafici, F.Merlo: J. Magn. Magn. Mater.220 (2000) 39.10.1016/S0304-8853(00)00471-6Suche in Google Scholar
[6] Y.Togami, K.Kobayashi, K.Sato, T.Teranishi: J. Appl. Phys.53 (1982) 2335. 10.1063/1.330811Suche in Google Scholar
[7] A. V.Svalov, A.Fernandez, V. O.Vas'kovskiy, M.Tejedor, J. M.Barandiarán, I.Orue, G. V.Kurlyandskaya: J. Magn. Magn. Mater.304 (2006) e703. 10.1016/j.jmmm.2006.02.192Suche in Google Scholar
[8] X. B.Liu, Z.Altounian: J. Magn. Magn. Mater.292 (2005) 83.10.1016/j.jmmm.2004.10.100Suche in Google Scholar
[9] J. M.Riveiro, J. P.Andrés, J.Colino: J. Magn. Magn. Mater.198-199 (1999) 428.Suche in Google Scholar
[10] A. T.Dinsdale: SGTE pure elements (unary) database, Version 4.5 (2006).Suche in Google Scholar
[11] M.Hillert: J. Alloys Compd.320 (2001) 161.10.1016/S0925-8388(00)01481-XSuche in Google Scholar
[12] O.Redlich, A. T.Kister: Ind. Eng. Chem.40 (1948) 345.10.1021/ie50458a036Suche in Google Scholar
[13] G.Kaptay: Calphad28 (2004) 115.10.1016/j.calphad.2004.08.005Suche in Google Scholar
[14] R.Schmid-Fetzer, D.Andersson, P. Y.Chevalier, L.Eleno, O.Fabrichnaya, U. R.Kattner, B.Sundman, C.Wang, A.Watson, L.Zabdyr, M.Zinkevich: Calphad31 (2007) 38.10.1016/j.calphad.2006.02.007Suche in Google Scholar
[15] D. A.Keller, S. G.Sankar, R. S.Craig, W. E.Wallace: Am. Inst. Phys. Conf. Proc. 18 (1974) 1207.Suche in Google Scholar
[16] S. B. K.Leghari: J. Natural Sci. Math.29 (1) (1989) 69.Suche in Google Scholar
[17] M.Baricco, C.Antonione, L.Battezzati: Scr. Metall.21 (1987) 849. 10.1016/0036-9748(87)90335-8Suche in Google Scholar
[18] W. Q.Ge, C. H.Wu, Y. C.Chuang: Z. Metallkd.83 (1992) 300.Suche in Google Scholar
[19] K. H. J.Buschow, F. J. A.Den Broeder: J. Less-Common Met.33 (1973) 191. 10.1016/0022-5088(73)90038-6Suche in Google Scholar
[20] K. H. J.Buschow, A. S.van der Goot: J. Less-Common Met.18 (1969) 249. 10.1016/0022-5088(69)90140-4Suche in Google Scholar
[21] K. H. J.Buschow: J. Less-Common Met.11 (1966) 204.10.1016/0022-5088(66)90006-3Suche in Google Scholar
[22] J. H.Wernick, S.Geller: Acta Cryst.12 (1959) 662.10.1107/S0365110X59001955Suche in Google Scholar
[23] J. H.Wernick, S.Geller: Trans. AIME218 (1960) 866.Suche in Google Scholar
[24] A. E.Dwight: Trans. ASM53 (1961) 479.Suche in Google Scholar
[25] W.Ostertag, K. J.Strnat: Acta Cryst.21 (1966) 560.10.1107/S0365110X66003451Suche in Google Scholar
[26] V. F.Novy, R. C.Vickery, E. V.Kleber: Trans. AIME221 (1961) 588.Suche in Google Scholar
[27] M.Hillert, L. I.Staffansson: Acta Chem. Scand.24 (1970) 3618.10.3891/acta.chem.scand.24-3618Suche in Google Scholar
[28] B.Sundman, J.Agren: J. Phys. Chem. Solids42 (1981) 297.10.1016/0022-3697(81)90144-XSuche in Google Scholar
[29] M.Hillert, B.Jansson, B.Sundman: Z. Metallkd.79 (1988) 81.Suche in Google Scholar
[30] Z.Du, D.Lü: J. Alloys Compd.373 (2004) 171.Suche in Google Scholar
[31] Y.Khan: Z. Metallkd.65 (1974) 489.10.1515/ijmr-1974-650706Suche in Google Scholar
[32] C. H.Wu, Y. C.Chuang, X. P.Su: Z. Metallkd.82 (1991) 73.Suche in Google Scholar
[33] E. F.Bertaut, R.Lemaire, J.Schweizer: Bull. Soc. Fr. Miner. Crist.88 (1965) 580.Suche in Google Scholar
[34] K. H. J.Buschow, A. S.Van der Goot: J. Less-Common Met.14 (1968) 323. 10.1016/0022-5088(68)90037-4Suche in Google Scholar
[35] K. H. J.Buschow: Z. Metallkd.57 (1966) 728.10.1515/ijmr-1966-571003Suche in Google Scholar
[36] J.Pelleg, O. N.Carlson: J. Less-Common Met.9 (1965) 281.10.1016/0022-5088(65)90021-4Suche in Google Scholar
[37] I. V.Nikolaenko, M. A.Turchanin: Tasplavy5 (1989) 77.Suche in Google Scholar
[38] S. S.Deodhar, P. J.Ficalora: Metall. Trans. A6 (1975) 1909.Suche in Google Scholar
[39] C.Colinet, A.Pasturel: J. Less-Common Met.119 (1986) 167.10.1016/0022-5088(86)90207-9Suche in Google Scholar
[40] J.Schott, F.Sommer: J. Less-Common Met.119 (1986) 307.10.1016/0022-5088(86)90691-0Suche in Google Scholar
[41] C.Colinet, A.Pasturel, K. H. J.Buschow: Metall. Trans. A18 (1987) 903. 10.1007/BF02646931Suche in Google Scholar
[42] E.Burzo: Phys. Rev. B6 (1972) 2882.10.1103/PhysRevB.6.2882Suche in Google Scholar
[43] R.Lemaire: Cobalt32 (1966) 132.Suche in Google Scholar
[44] R.Lemaire: Cobalt33 (1966) 201.Suche in Google Scholar
[45] Z. K.Liu, W. J.Zhang, B.Sundman: J. Alloys Compd.226 (1995) 33. 10.1016/0925-8388(95)01578-7Suche in Google Scholar
[46] B.Sundman, B.Jansson, J.-O.Andersson: Calphad9 (1985) 153.10.1016/0364-5916(85)90021-5Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News