Phase equilibria in the Fe–Ti–V system
-
Blaise Massicot
, Jean-Marc Joubert and Michel Latroche
Abstract
In order to study the phase diagram of the ternary Fe–Ti–V system, the isothermal sections at 1 000 °C and 1 200 °C have been determined. The nature and composition of the phases involved in the different equilibria were investigated by means of X-ray powder diffraction and electron probe microanalysis. More than 15 at.% Fe could be substituted in the body centered cubic Ti–V solid solution at both temperatures. The C14, Fe2 Ti-derived phase extends to the composition Ti33V33Fe33. A linear regression between the lattice parameter and the composition of the studied body centered cubic phase is proposed. The data provided by the isothermal sections, together with the differential thermal analysis measurements, highlighted the presence of a quasi-peritectic reaction U, and a tentative liquidus projection is presented, based on a metallographic analysis.
References
[1] A.Züttel: Materials Today6 (2003) 24. 10.1016/S1369-7021(03)00922-2Search in Google Scholar
[2] J.Reilly, R.Wiswall: Inorg. Chem.13 (1974) 218. 10.1021/ic50131a042Search in Google Scholar
[3] H.Miyamura, T.Sakai, N.Kuriyama, H.Tanaka, I.Uehara, H.Ishikawa: J. Alloys Compd.253-254 (1997) 232. 10.1016/S0925-8388(96)03028-9Search in Google Scholar
[4] S.Challet, M.Latroche, F.Heurtaux: J. Alloys Compd.439 (2007) 294. 10.1016/j.jallcom.2006.08.070Search in Google Scholar
[5] G.Cacciamani, J.De Keyzer, R.Ferro, U.Klotz, J.Lacaze, P.Wollants: Intermetallics14 (2006) 1312. 10.1016/j.intermet.2005.11.028Search in Google Scholar
[6] J.-L.Murray, in: J.-L.Murray (Ed.), Phase Diagrams of Binary Titanium Alloys, ASM International (1987) 99.Search in Google Scholar
[7] K.-C.Hari Kumar, P.Wollants, L.Delaey: Calphad18 (1994) 223. 10.1016/0364-5916(94)90028-0Search in Google Scholar
[8] J.Balun: Phase Equilibria in Fe-Rh-X (X = Ti, Co) Systems. Ph.D. thesis, Rheinisch-Westfélische Technische Hochschule Aachen (2004) Shaker Verlag.Search in Google Scholar
[9] L.Eleno, J.Balun, G.Inden, C.Schön: Intermetallics15 (2007) 1248. 10.1016/j.intermet.2007.03.008Search in Google Scholar
[10] H.Okamoto: J. Phase Equilib.17 (1996) 369. 10.1007/BF02665569Search in Google Scholar
[11] J.-F.Smith: J. Phase Equilib.5 (1984) 184.10.1007/BF02868958Search in Google Scholar
[12] J.-F.Smith, in: J.-F.Smith (Ed.), Phase Diagrams of Binary Vanadium Alloys, ASM International (1989) 83.Search in Google Scholar
[13] J.-L.Murray: Bull. Alloy Phase Diagrams2 (1981) 48. 10.1007/BF02873703Search in Google Scholar
[14] J.-L.Murray, in: J.-F.Smith (Ed.), Phase Diagrams of Binary Vanadium Alloys, ASM International (1989) 297.Search in Google Scholar
[15] W.Fuming, H.-M.Flower: Mater. Sci. Technol.5 (1989) 1172.Search in Google Scholar
[16] H.Okamoto: J. Phase Equilib.14 (1993) 266.10.1007/BF02667830Search in Google Scholar
[17] H.Okamoto: J. Phase Equilib.16 (1995) 202. 10.1007/BF02664864Search in Google Scholar
[18] B.Tsin Khua, I.-I.Kornilov: Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk. Metallurgiya i Toplivo6 (1959) 110.Search in Google Scholar
[19] B.Tsin Khua, I.-I.Kornilov: Russ. J. Inorg. Chem.5 (1960) 434.Search in Google Scholar
[20] S.Prima, L.Tretyachenko: Soviet Powder Metallurgy and Metal Ceramics26 (1987) 414.Search in Google Scholar
[21] B.Tsin Khua, I.-I.Kornilov: Russ. J. Inorg. Chem.6 (1961) 694.Search in Google Scholar
[22] B.Tsin Khua, I.-I.Kornilov: Tr. Inst. A.A. Baikova, Akad. Nauk SSSR8 (1961) 54.Search in Google Scholar
[23] V.Raghavan, in: V.Raghavan (Ed.), Phase Diagrams of Ternary Iron Alloys, Vol. 1, The Indian Insitute of Metals, Calcutta, India (1987) 73.Search in Google Scholar
[24] L.Cornish, A.Watson, in: G.Effenberg, S.Ilyenko (Eds.), Ternary Alloy Systems, Subvolume D: Iron Systems, Part 5: Selected Systems from Fe–N–V to Fe–Ti–Zr, Vol. 11, Springer (2009) 668.Search in Google Scholar
[25] W.-R.Lucas, W.-P.Fischel: Trans. Am. Soc. Met.46 (1954) 277.Search in Google Scholar
[26] G.Ghosh, V.Raghavan, in: Progress in Metallurgical Research: Fundamental and Applied Aspects, Proceedings of the International Conference, (1985) 403.Search in Google Scholar
[27] http://www.icdd.com/products/pdf2.htmSearch in Google Scholar
[28] http://www.bruker-axs.de/eva.htmlSearch in Google Scholar
[29] H.-M.Rietveld: J. Appl. Crystallogr.2 (1969) 65. 10.1107/S0021889869006558Search in Google Scholar
[30] J.Rodriguez Carvajal: An Introduction to the Program FullProf (2001).Search in Google Scholar
[31] J.-F.Bérar, P.Lelann: J. Appl. Crystallogr.24 (1991) 1. 10.1107/S0021889890008391Search in Google Scholar
[32] J.-F.Bérar: NIST Special Publication846 (1992) 63. (Accuracy in Powder Diffraction II).Search in Google Scholar
[33] M.Abramoff, P.Magelhaes, S.Ram: Biophotonics Int.11 (2004) 36.Search in Google Scholar
[34] http://rsb.info.nih.gov/ij/Search in Google Scholar
[35] J.-L.Murray, H.-A.Wriedt, in: J.-L.Murray (Ed.), Phase Diagrams of Binary Titanium Alloys, ASM International (1987) 1.Search in Google Scholar
[36] K.-J.Jang, J.-H.Jung, D.-M.Kim, J.-S.Yu, J.-Y.Lee: J. Alloys Compd.268 (1998) 290. 10.1016/S0925-8388(97)00591-4Search in Google Scholar
[37] K.Nomura, E.Akiba: J. Alloys Compd.231 (1995) 513. 10.1016/0925-8388(95)01862-XSearch in Google Scholar
[38] J.-F.Lynch, A.-J.Maeland, G.-G.Libowitz: Z. Phys. Chem. Neue Fol.145 (1985) 51.Search in Google Scholar
[39] L.Vegard: Z. Phys.5 (1921) 17. 10.1007/BF01349680Search in Google Scholar
[40] V.-D.Sedykh: Acta Crystallogr. A34 (1978) S14. Suppl. 01.5–4.Search in Google Scholar
[41] I.Mirabeau, M.-C.Cadeville, G.Parette, I.-A.Campbel: J. Phys. F12 (1982) 25. 10.1088/0305-4608/12/1/004Search in Google Scholar
[42] B.-S.Bokshtein, E.-B.Guglia: Izv. V.U.Z., Chernaya Metall.5 (1979) 98.Search in Google Scholar
[43] R.Kohlhaas, P.Dünner, N.Schmitz-Pranghe: Z. Angew. Phys.23 (1967) 245.Search in Google Scholar
[44] R.-M.Wood: Proc. Phys. Soc.80 (1962) 783. 10.1088/0370-1328/80/3/323Search in Google Scholar
[45] R.Ray, B.-C.Giessen, N.-J.Grant: Metall. Mater. Trans. B3 (1972) 627.Search in Google Scholar
[46] Y.Murakami, H.Kimura, Y.Nishimura: Trans. Nat. Res. Inst. Met.1 (1959) 7.Search in Google Scholar
[47] R.-E.Hannemann, A.-N.Mariano: Trans. Metall. Soc. AIME230 (1964) 937.Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News